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Chapter 1

Ramsey’s Theorem

1.1. Ramsey’s Theorem for graphs

Definition 1. A graph G = (V ,E) is a set V of points, called vertices, and a set E of
distinct pairs of vertices, called edges.

Definition 2. A subgraph G′ = (V ′,E′) of a graph G = (V ,E) is a graph such that
V ′ ⊆V and E′ ⊆ E.

Figure 1.1 below depicts a graph G with four vertices V = {V1,V2,V3,V4} and
four edges E = {e1, e2, e3, e4}, where e1 = {V1,V2}, e2 = {V2,V3}, e3 = {V3,V4}, and
e4 = {V2,V4}. Note that edges are unordered pairs of vertices, meaning that {V1,V2}
and {V2,V1} refer to the same edge. Next to it is a graph G′ = (V ′,E′) with V ′ =
V = {V1,V2,V3,V4} and E′ = {e1, e3}. Since V ′ ⊆V and E′ ⊆ E, we deduce that G′ is a
subgraph of G.

Figure 1.1: A graph G and one of its subgraphs G′.
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6 CHAPTER 1. RAMSEY’S THEOREM

Definition 3. Given n ∈N, a complete graph on n vertices, denoted by Kn, is a graph
with n vertices and the property that every pair of distinct vertices is connected by
an edge.

Figure 1.2: A depiction of Kn for n = 2,3,4,5, and 6.

Definition 4. An edge-coloring of a graph G = (V ,E) is an assignment of a color to
each edge of the graph. A graph that has been edge-colored is called monochromatic
if all of its edges are the same color.

An edge-coloring of a graph can also be viewed as a function where the domain
is the set of edges of the graph and the codomain is the set of colors. For example,
suppose one has a graph with edges E = {e1, e2, e3} and a set of colors C = {red,blue}.
A valid coloring of this graph can be seen as a function χ : E → C, where, for instance,
χ(e1)= red, χ(e2)= blue, and χ(e3)= red.

Ramsey’s Theorem for graphs. For any n,m ∈ N there exists R = R(n,m) ∈ N
such that any edge-coloring of KR with at most m colors contains a monochromatic
copy of Kn as a subgraph.

Let us illustrate the content of Ramsey’s Theorem for graphs by looking at
an example. If the edge-coloring consists only of two colors, say red and blue,
and we assume n = 3, then Ramsey’s Theorem asserts that there exists a number
R(3,2) such that any edge-coloring of a complete graph on R(3,2) vertices admits a
monochromatic triangle. Note that R(3,2) cannot equal 5, because Figure 1.3 below
shows a 2-coloring of K5 containing no monochromatic triangle. However, taking

Figure 1.3: An edge-coloring of K5 containing no monochromatic copy of K3.
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R(3,2)= 6 already works. Indeed, through some trial-and-error, one quickly realizes
that it is impossible to find an edge-coloring of K6 using only 2 colors that avoids
monochromatic triangles. For instance, Figure 1.4 below shows a complete graph
on 6 vertices where all but one edge have been colored either red or blue. As can
be seen from the picture, it is impossible to complete the coloring without creating
either a red or a blue triangle.

Figure 1.4: An almost-complete edge-coloring of K6 that cannot be completed without
creating a monochromatic copy of K3. This example illustrates that it is impossible
to color K6 using two colors without producing a monochromatic copy of K3.

The best possible value for R(n,m) is called the Ramsey number for (n,m). Below
is a list of Ramsey numbers known to date:

(n,m) Ramsey Number
(3,2) 6
(4,2) 18
(3,3) 17
(3,4) 30
(5,2) unknown
(3,5) unknown
(4,3) unknown

...

1.2. Ramsey’s Theorem for 2-sets

Definition 5. A 2-set is a set consisting of exactly two elements. Given a set X , a
2-subset of X is any subset of X that is a 2-set. We will use X (2) to denote the set of
all 2-subsets of X .

We have already seen examples of 2-subsets in the previous section. Indeed, the
set of edges E of a graph G = (V ,E) consists of 2-subsets of the set of vertices V . In
other words, E ⊆V (2). Note that a graph G = (V ,E) is a complete graph if and only if
E =V (2).
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Definition 6. Let X be a set. A coloring of X (2) is an assignment of a color to each
2-subset of X . We call X (2) monochromatic if all elements in X (2) have the same
color.

The following can be viewed as an “infinitary” version of Ramsey’s Theorem for
graphs.

Ramsey’s Theorem for 2-sets. Let X be an infinite set. Then for any finite coloring
of X (2) there exists an infinite subset Y ⊆ X such that Y (2) is monochromatic.

Proof. Fix an arbitrary element x1 ∈ X and note that any 2-set of the form {x1, x}
for x ∈ X\{x1} has a certain color. Since the number of colors is finite but the set
X\{x1} is infinite, there exists an infinite subset X1 ⊆ X\{x1} such that all 2-sets of
the form {x1, x} for x ∈ X1 have the same color. Now fix an arbitrary element x2 ∈ X1
and let us repeat the same procedure. Any 2-set of the form {x2, x} for x ∈ X1\{x2}
has a certain color. For the same reason as before, since the number of colors is finite
but the set X1\{x2} is infinite, there exists an infinite subset X2 ⊆ X1\{x1} such all
2-sets of the form {x2, x} for x ∈ X2 have the same color. Continuing this procedure
produces an infinite sequence of distinct elements x1, x2, x3, . . . and a nested family
of infinite sets X ⊇ X1 ⊇ X2 ⊇ X3 ⊇ . . . such that for all i ∈N we have xi+1 ∈ X i and
the set {{xi, x} : x ∈ X i} is monochromatic.

Let ci denote the color of elements in the set {{xi, x} : x ∈ X i}. Then c1, c2, c3, . . . is
an infinite sequence of colors. Since there are only finitely many different colors, one
color must appear infinitely often in this sequence. In other words, there exists a
color c and an infinite sequence i1 < i2 < i3 < . . . ∈N such that cik = c for all k ∈N.

To finish the proof, define Y = {xik : k ∈N} and observe that any 2-subset of Y is of
the form {xik , xi`} for k < ` ∈N. Since xi` ∈ X i`−1 and X i`−1 ⊆ X ik , the 2-set {xik , xi`}
has the color c. Hence all 2-subsets of Y have the color c, which proves that Y (2) is
monochromatic.

Proposition 7. Ramsey’s Theorem for 2-sets implies Ramsey’s Theorem for graphs.

Proof. We shall prove the contrapositive. Suppose V1,V2, . . . is an infinite sequence
of distinct vertices and let KR denote the complete graph on the vertices V1, . . . ,VR .
If Ramsey’s Theorem for graphs is false then for some n,m ∈ N and every R ∈
N there exists an edge-coloring χR : {V1, . . . ,VR}(2) → {1, . . . ,m} of KR admitting no
monochromatic copy of Kn.

If s 6 R then any edge-coloring of KR induces an edge-coloring of Ks, because
Ks is a subgraph of KR . In particular, we can restrict χR to Ks and obtain an edge-
coloring of Ks with at most m colors admitting no monochromatic copy of Kn. Let us
denote this restriction of χR to Ks by χR,s.

Set R1 =N. Consider the sequence of colors (χR,2)R∈R1 , all of which are edge-
colorings of K2. Since there are only finitely many possibilities of coloring the edges
of K2 with m colors and R1 is infinite, there exists an infinite subset R2 ⊆R1 such
that (χR,2)R∈R2 all yield the same edge-coloring of K2. Next, we can repeat the same
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argument with R2 in place of R1 and χR,3 in place of χR,2. Indeed, since there
are only finitely many possibilities of coloring the edges of K3 with m colors and
(χR,3)R∈R2 is an infinite sequence of edge-colorings of K3, there exists an infinite
subset R3 ⊆ R2 such that all colorings in (χR,3)R∈R3 are identical. By continuing
this procedure we end up with an infinite family of nested sets R1 ⊇R2 ⊇R3 ⊇ . . .
such that all edge-colorings in {χR,s : R ∈Rs} are identical. In other words, for all
R1,R2 ∈Rs and all distinct i, j ∈ {1, . . . , s} the edge {Vi,Vj} has the same color with
respect to χR1 and χR2 .

Next define a finite coloring of N(2) by assigning to each 2-subset {i, j} ∈N(2) the
same color as the edge {Vi,Vj} under the coloring χR , where R is any element in Rs
and s is any number bigger than both i and j. Due to our construction, the choice of
the color does not depend on which R ∈Rs or which s bigger than i and j we choose.
To finish the proof, note that with this coloring of N(2) there does not exist a subset
Y ⊆N with |Y |> n and such that Y (2) is monochormatic, because the existence of
such a set would imply the existence of a monochromatic copy of Kn with respect
to the coloring χR for sufficiently large R, which we know is not possible. This also
means that there exists no infinite subset Y ⊆N such that Y (2) is monochormatic,
thus contradicting Ramsey’s Theorem for 2-sets.

1.3. Schur’s Theorem

Fermat’s Last Theorem states that for m> 3 the equation

xm + ym = zm (1.3.1)

has no positive integer solutions x, y, z ∈N. For centuries, this remained one of the
biggest open problems in mathematics, and one whose intriguing nature captivated
many mathematicians. Among them was also Issai Schur, who investigated a
natural, localized version of Fermat’s Last Theorem. More precisely, he wondered
whether for any m> 2 the congruence equation

xm + ym ≡ zm (mod p) (1.3.2)

possesses non-trivial solutions for all but finitely many primes p. Note that any non-
trivial solution to Fermat’s equation xm + ym = zm also offers a non-trivial solution
to Schur’s equation xm + ym ≡ zm (mod p) for all primes p satisfying p > zm, but not
the other way around. In order to address (1.3.2), Schur proved a theorem that is
often regarded as the earliest result in Ramsey Theory:

Schur’s Theorem ([Sch17]). For any m ∈N there exists S = S(m) ∈N such that if
the set {1, . . . ,S} is colored using at most m colors then there exist monochromatic
x, y, z ∈ {1, . . . ,S} with x+ y= z.
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Proof. Take S = R(3,m), where R(3,m) is the Ramsey number for (3,m). Let KS de-
note the complete graph on S vertices and denote the vertices of KS by V1,V2, . . . ,VS.
Any coloring of the set {1, . . . ,S} induces an edge-coloring on KS by assigning to
each edge {Vi,Vj} the color of the number |i− j| ∈ {1, . . . ,S}. According to Ramsey’s
Theorem for graphs, KS contains a monochromatic triangle. Let Va, Vb, and Vc, for
a < b < c, be the vertices of this monochromatic triangle. By setting

x = b−a, y= c−b, and z = c−a,

it is then easy to check that x, y, z have the same color and satisfy x+ y= z.

The smallest possible positive integer S(m) for which the conclusion of Schur’s
Theorem holds is referred to as the Schur number for m. The known Schur numbers
to date are:

m Schur Number
2 5
3 14
4 45
5 161
6 unknown
7 unknown
...

Here is an example from Schur’s original paper [Sch17] of a 3-coloring of {1, . . . ,13}
admitting no monochromatic solution to the equation x+ y= z:

color 1: {2,3,11,12}
color 2: {5,6,8,9}
color 3: {1,4,7,10,13}

More examples along these lines can be found here: https://oeis.org/A030126.
The proof that the Schur number for 5-colorings equals 161 took up 2 petabytes of

space. Even though every 5-coloring of {1, . . . ,161} admits a monochromatic solution
to x+ y = z, there are 2447113088 many 5-colorings of {1, . . . ,160} admitting no
monochromatic solution to x+ y= z.

With the help of the above theorem, Schur was able to show that, contrary to
Fermat’s equation (1.3.1), its “local” counterpart (1.3.2) does possess non-trivial
solutions.

Theorem 8. Let m ∈ N. There exists F = F(m) such that for all prime numbers
p > F there exist x, y, z ∈ {1, . . . , p−1} with xm + ym ≡ zm (mod p).

For the proof of Theorem 8, we will need the following basic fact from algebra,
the proof of which is left to the interested reader.

https://oeis.org/A030126
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Lemma 9. Let (K ,+, ·) be a field and f (x) ∈ K[x] a polynomial of degree deg( f )= m
with coefficients in K . Then the number of roots of f (x) is at most m.

Let us now see the proof of Theorem 8.

Proof of Theorem 8. Take F = S(m), where S(m) is as guaranteed by Schur’s The-
orem. Let p be any prime number bigger than F. The set Fp = {0,1, . . . , p−1} of
congruence classes modulo p naturally forms a field (Fp,+, ·) under the modular
arithmetic operations + and ·. Let F×p = Fp\{0} and consider the set

C := {xm : x ∈ F×p}.

Note that C is a subgroup of the multiplicative group (F×p , ·). This means that F×p
can be covered by cosets of C. More precisely, there exist coset representatives
g1, g2, . . . , gr ∈ F×p such that

F×p = g1C∪ g2C∪ . . .∪ grC. (1.3.3)

It follows from Lemma 9 that for any y ∈ F×p the equation xm ≡ y (mod p) has at
most m solutions, because the polynomial xm − y can have no more than m roots. So
any y ∈ F×p admits at most m representation of the form xm, which implies that that
m|C|> |F×p |. It follows that C can have at most m cosets, or in other words, r 6 m.
Since p > F, the set {1, . . . ,F} is a subset of F×p = {1, . . . , p−1} and hence (1.3.3) yields
a partition of the set {1, . . . ,F} involving r disjoint cells. We can think of this partition
as a coloring of {1, . . . ,F} using r colors. Since F = S(m) and r 6 m, it follows from
Schur’s Theorem that there exist monochromatic x̃, ỹ, z̃ ∈ {1, . . . ,F} for which x̃+ ỹ= z̃.
Since x̃, ỹ, z̃ have the same color, they all belong to the same coset. In other words,
there exists a coset representative g i ∈ {g1, . . . , gr} such that x̃, ỹ, z̃ ∈ g iC. Take any
x, y, z ∈ F×p for which

x̃ ≡ g ixm (mod p), ỹ≡ g i ym (mod p), and z̃ ≡ g i zm (mod p),

which is possible because x̃, ỹ, z̃ ∈ g iC. Then we have

g ixm + g i ym ≡ g i zm (mod p),

from which it follows that

xm + ym ≡ zm (mod p),

because g i 6≡ 0 (mod p).

1.4. Ramsey’s Theorem for k-sets

Definition 10. A k-set is a set consisting of exactly k elements. Given a set X , a
k-subset of X is any subset of X that is a k-set. We will use X (k) to denote the set of
all k-subsets of X .
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We have already seen Ramsey’s Theorem for 2-sets. Here is Ramsey’s result in
full generality.

Ramsey’s Theorem for k-sets ([Ram30]). Let X be an infinite set and k > 2. Then
for any finite coloring of X (k) there exists an infinite subset Y ⊆ X such that Y (k) is
monochromatic.

Proof. Let us use a proof by induction on k. The base case of the induction, when
k = 2, follows from Ramsey’s Theorem for 2-sets established in Section 1.2. To
prove the inductive step, assume k > 3 and Ramsey’s Theorem has already been
proven for (k − 1)-sets. Let Y0 = X and fix an arbitrary element y1 ∈ Y0. Note
that any k-set of the form {y1, x2, . . . , xk} for {x2, . . . , xk} ∈ (Y0\{y1})(k−1) has a certain
color, which induces a finite coloring on (Y0\{y1})(k−1). Applying Ramsey’s Theorem
for (k − 1)-sets, we can find an infinite subset Y1 ⊆ Y0\{y1} such that all k-sets
of the form {y1, x2, . . . , xk} for {x2, . . . , xk} ∈ Y (k−1)

1 are monochromatic. Next, fix an
arbitrary element y2 ∈Y1 and repeat the same procedure. The given coloring of k-sets
of the form {y2, x2, . . . , xk} for {x2, . . . , xk} ∈ (Y1\{y2})(k−1) induces a finite coloring of
(Y1\{y2})(k−1). Applying Ramsey’s Theorem for (k−1)-sets once more yields an infinite
subset Y2 ⊆ Y1\{y2} such that all k-sets of the form {y2, x2, . . . , xk} for {x2, . . . , xk} ∈
Y (k−1)

2 are monochromatic. Continuing this procedure produces an infinite sequence
of distinct elements y1, y2, y3, . . . and a nested family of infinite sets X = Y0 ⊇ Y1 ⊇
Y2 ⊇ Y3 ⊇ . . . such that for all i ∈ N the set {{yi, x2, . . . , xk} : {x2, . . . , xk} ∈ Y (k−1)

i } is
monochromatic. Moreover, we have yi+1 ∈Yi for all i ∈N.

Let ci denote the color of elements in the set {{yi, x2, . . . , xk} : {x2, . . . , xk} ∈Y (k−1)
i }.

Since the sequence c1, c2, c3, . . . is infinite but the number of colors is finite, one color
must appear infinitely often in this sequence. In other words, there exists a color c
and an infinite subsequence ci1 , ci2 , ci3 , . . . ∈N such that ci` = c for all ` ∈N. To finish
the proof, define Y = {yik : k ∈N} and observe that any k-subset of Y is of the form
{yi`1

, . . . , yi`k
} for `1 < . . .< `k ∈N. Since {yi`2

, . . . , yi`k
} ∈Yi`1

because `1 < `2 < . . .< `k,
the k-set {yi`1

, . . . , yi`k
} has the color c. Hence all k-subsets of Y have the color c,

which proves that Y (k) is monochromatic.

1.5. The compactness principle for colorings

Compactness Theorem for finite colorings. Let Y be an infinite set, let m ∈N,
and let F be a collection of finite subsets of Y . The following are equivalent:

(i) For any coloring of Y using no more than m colors there exists F ∈ F such
that all elements in F have the same color.

(ii) There exists a finite set Z ⊆Y such that for any finite coloring of Z using no
more than m colors there exists F ∈F with F ⊆ Z and such that all elements
in F have the same color.
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Proof. The implication (ii)=⇒ (i) is immediate, so it only remains to prove (i)=⇒ (ii).
We can view a coloring of Y that uses no more than m colors as a function χ : Y →
{1, . . . ,m} simply by associating a number from 1 to m with each color. This means
the space of all possible colorings of Y can be identified with the product space
{1, . . . ,m}Y . Note that the finite set {1, . . . ,m}, endowed with the discrete topology, is
a compact Hausdorff space. By Tychonoff ’s theorem, {1, . . . ,m}Y endowed with the
product topology is therefore also a compact Hausdorff space.

For any finite non-empty set Z ⊆Y let CZ be the set of all colorings in {1, . . . ,m}Y

for which there is monochromatic F ∈F with F ⊆ Z. Then CZ is an open set in the
product topology on {1, . . . ,m}Y . Moreover, in light of statement (i), we have⋃

Z⊆Y
0<|Z|<∞

CZ = {1, . . . ,m}Y .

By compactness, it follows that there is some finite non-empty set Z ⊆Y such that
CZ = {1, . . . ,m}Y , completing the proof.

1.6. Ramsey’s Theorem for hypergraphs

A hypergraph is a generalization of a graph in which an edge can join multiple
vertices at once.

Definition 11. Let k ∈N. A k-uniform hypergraph is a pair G = (V ,E) where V is a
set of points, called vertices, and E ⊆V (k) is a set of k-subsets of V , called hyperedges.

Given k,n ∈ N with k 6 n, a complete k-uniform hypergraph on n vertices is a
k-uniform hypergraph G = (V ,E) where the set of vertices has cardinality n and
where every set of k distinct vertices in V is connected by an edge. In other words,
G = (V ,E) is a complete k-uniform hypergraph on n vertices if |V | = n and E =V (k).

Ramsey’s Theorem for hypergraphs. For any n,m,k ∈N there exists a number
R = Rk(n,m) ∈N such that any edge-coloring of a complete k-uniform hypergraph
on R vertices with at most m colors admits a monochromatic copy of a complete
k-uniform hypergraph on n vertices.

Proof. Let n,m,k ∈ N be given. If follows from Ramsey’s Theorem for k-sets that
for any m-coloring of N(k) there exists a set S ⊆ N with |S| = n such that S(k) is
monochromatic. If we now apply the Compactness Theorem for finite colorings to
this statement (with Y =N(k) and F = {S(k) : S ⊆N, |S| = n}), it follows that there
exists some integer R = Rk(n,m) such that for any m-coloring of {1, . . . ,R}(k) exists
a set S ⊆ {1, . . . ,R} with |S| = n such that S(k) is monochromatic. But note that
{1, . . . ,R}(k) can be identified with a complete k-uniform hypergraph on R vertices,
and S(k) with a complete k-uniform hypergraph on n vertices. This finishes the
proof.
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Figure 1.5: Here is an example of a 3-uniform hypergraph with vertices V =
{7,13,17,23,53,73,97,103,137,193}, where three vertices are connected by a hy-
peredge if and only if their squares form a 3-term arithmetic progression. For
example, {7,13,17} is an edge, because 72,132,172 are in an arithmetic progression.

1.7. Erdős-Szekeres’ Theorem on convex
polygons

Definition 12. A non-empty set C ⊆ R2 is called convex if for any ~x,~y ∈ C and
λ ∈ [0,1] one has λ~x+ (1−λ)~y ∈ C.

The point λ~x+ (1−λ)~y is usually referred to as a convex combination of the
points~x and ~y. Also observe that the set {λ~x+ (1−λ)~y :λ ∈ [0,1]} is just an algebraic
description for the line segment joining the points~x and ~y.

Figure 1.6: A convex polygon (left) and a non-convex polygon (right).

Definition 13. The convex hull of a non-empty set K ⊆R2 is the smallest convex set
that contains K .
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Since the intersection of convex sets is again a convex set, it follows that the
convex hull of K equals the intersection of all convex sets that contain K . The convex
hull can also be described algebraically as the set of all finite convex combinations
of elements in the set. More precisely, if K is a subset of R2 and we use conv(K) to
denote its convex hull, then

conv(K)= {w1~z1+ . . .+w`~z` : ` ∈N, ~z1, . . . ,~z` ∈ K , w1, . . . ,w` ∈ [0,1], w1+ . . .+w` = 1}.
(1.7.1)

Mind that the convex hull of K should not be confused with the closed convex
hull of K , which is defined as the smallest closed convex set that contains K , and is
usually denoted by conv(K) instead of conv(K).

Definition 14. A non-empty set of points K ⊆R2 is said to be in convex position if
no point~x ∈ K belongs to the convex hull of K\{~x}.

For example, a finite set K ⊆R2 is in convex position if and only if its elements
are the corners of a convex polygon.

Definition 15. A set K ⊆R2 is called discrete if it has no accumulation points.

Erdős-Szekeres’ Theorem on points in convex position. Let K be an infinite
discrete set of points in R2. Then either there is an infinite subset of K whose points
lie on a straight line or there is an infinite subset of K whose points are in convex
position.

For the proof of Erdős-Szekeres’ Theorem on points in convex position we will
need the following classical result from convex geometry.

Carathéodory’s theorem. Let K ⊆R2 with |K |> 4 be given. Then K is in convex
position if and only if any four distinct points from K form a convex quadrilateral.

Proof. Clearly, if K is in convex position then any quadrilateral formed using points
from K is convex. To prove the converse, we will show that if K is not in convex
position then there exist four points in K such that one of these points lies within
the triangle spanned by the others.

Suppose K is not in convex position. Then there exists a point~x ∈ K lying in the
convex hull of K ′ = K\{~x}. In light of (1.7.1), this means that we can write~x as

~x = w1~z1 + . . .+w`~z`, (1.7.2)

where ~z1, . . . ,~z` ∈ K ′ and w1, . . . ,w` ∈ [0,1] with w1 + . . .+w` = 1. Note that we can
assume without loss of generality that ~z1, . . . ,~z` are in convex position. Indeed, if
for example ~z` belongs to the convex hull of ~z1, . . . ,~z`−1 then we can express ~z` as
a convex combination of ~z1, . . . ,~z`−1 and substitute this representation in (1.7.2),
allowing us to represent~x as a convex combination of~z1, . . . ,~z`−1 instead of~z1, . . . ,~z`.
Thus, invoking induction on `, we may assume that~z1, . . . ,~z` are in convex position.
This implies that~z1, . . . ,~z` form the corners of a convex polygon. Since~x lies inside
this polygon and since convex polygons decompose into triangles (as illustrated in
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Figure 1.7: A convex polygon divided into triangles.

Figure 1.7), there exists i < j < k ∈ {1, . . . ,`} such that~x lies in the triangle spanned
by~zi,~z j,~zk, finishing the proof.

Proof of Erdős-Szekeres’ Theorem on points in convex position. Let K ⊆ R2 be infi-
nite. We begin by coloring K (3) by assigning the color red to {~x,~y,~z} ∈ K (3) if the
points~x,~y,~z are collinear and the color blue otherwise. According to Ramsey’s The-
orem for k-sets, there exists an infinite set L ⊆ K such that all 3-sets in L(3) have
the same color. If this color is red, then any three distinct points in L are collinear.
This can only happen if all the points in L lie on a straight line, in which case we are
done.

It remains to deal with the case when all elements in L(3) are blue, i.e., when
no three points in L are collinear. In this situation, we need to apply Ramsey’s
Theorem one more time. Note that L is a discrete set. This implies that for any
three points ~x,~y,~z ∈ L the triangle 4~x~y~z contains only finitely many points from
L. Color all elements in L(3) by assigning the color red to the 3-set {~x,~y,~z} ∈ L(3) if
the triangle 4~x~y~z contains an even number of points from L, and the color blue
otherwise. By Ramsey’s Theorem for k-sets there exists an infinite set C ⊆ L such
that C(3) is monochromatic. We claim that C is in convex position. Indeed, if C
were not in convex position then, in view of Carathéodory’s theorem, there exist
four points ~w,~x,~y,~z ∈ C such that ~w lies inside the triangle ∆0 =4~x~y~z. Note that ∆0
splits into three smaller triangles, ∆1 =4~w~y~z, ∆2 =4~w~x~z, and ∆3 =4~w~x~y, as seen
in Figure 1.8. For i = 0,1,2,3 let #∆i denote the number of points from L inside the

Figure 1.8
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triangle ∆i. Since no three points from L are collinear, there are no points on the
boundary of any of these triangles aside from their corners. This means that the
number of points from L inside ∆0 equals the combined number of points inside the
three smaller triangles plus the point ~w, or in other words,

#∆0 = #∆1 +#∆2 +#∆3 +1. (1.7.3)

Recall that C(3) is monochromatic. If all elements in C(3) are red then the quantities
#∆0, #∆1, #∆2, and #∆3 are even numbers. This would imply that the left hand
side of (1.7.3) is an even number whereas the right hand side is an odd number, a
contradiction. Similarly, if all elements in C(3) are blue then #∆0, #∆1, #∆2, #∆3 are
odd numbers, implying that the left hand side of (1.7.3) is odd whereas the right
hand side is even. Either way, we have obtained a contradiction, which means that
C is in convex position.

The following is a big open conjecture at the interface of convex geometry and
Ramsey theory, posed by Erdős and Szekeres in 1960.

Conjecture (Erdős-Szekeres convex polygon problem). Let n> 3. Any set of 2n−2+1
points in the plane, no three of which are collinear, contains a subset of n points in
convex position.

1.8. Erdős-Szekeres’ Theorem on monotone
paths

Erdős-Szekeres’ Theorem on monotone paths. Fix n,m ∈ N. Any sequence
of distinct real numbers of length at least nm+1 admits either a monotonically
increasing subsequence of length n+1 or a monotonically decreasing subsequence of
length m+1.

Proof. Let x1, x2, . . . , xnm+1 be a sequence of real numbers of length nm+1. Label
each element xi in the sequence with the pair (ai,bi), where ai is the length of the
longest monotonically increasing subsequence ending with xi and bi is the length of
the longest monotonically decreasing subsequence ending with xi. Note that any two
elements in the sequence are labeled with a different pair: if i < j and xi < x j then
ai < a j, and on the other hand if xi > x j then bi < b j. If ai 6 n and bi 6 m for all i
then there are only nm possible labels, contradicting the fact that there are nm+1
elements in the sequence each with a unique label. It follows that either ai > n or
bi > m for some i, yielding either an increasing sequence of length at least n+1 or a
decreasing sequence of length at least m+1.





Chapter 2

van der Waerden’s Theorem

2.1. Notions of largeness

The goal of this section is to develop a general framework for dealing with notions
of largeness for sets. In what follows, let X be a set and P a family of subsets of X .
Since any reasonable notion of largeness is closed under supersets, the following
definition will be very useful for our purposes.

Definition 16. We call P upward closed if for all A ⊆ B ⊆ X we have A ∈P =⇒ B ∈
P .

Natural examples of upward closed families include the set of all infinite subsets
and the set of all cofinite subsets of a given infinite set X ,

P inf = {A ⊆ X : A is infinite} and Pcofin = {A ⊆ X : A is cofinite}.

Another example of an upward closed family is the collection of all sets that share a
common point,

P {x} = {A ⊆ X : x ∈ A}

where x ∈ X is fixed.

Definition 17. The dual family of P , denoted by P ∗, is defined as

P ∗ = {A ⊆ X : A∩B 6= ; for all B ∈P }.

The families P inf and Pcofin are mutually dual, meaning that P ∗
inf =Pcofin and

P ∗
cofin =P inf, whereas the family P {x} is self-dual in the sense that P {x} =P ∗

{x}. Note
that if P is upward closed then its dual P ∗ is also upward closed. Also, if P is
upward closed then we have the following two convenient properties:

• For any set A ⊆ X ,

A ∈P ∗ ⇐⇒ Ac ∉P , (2.1.1)

19
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where Ac = X\A denotes the complement of A in X .
• P ∗∗ =P .

Definition 18. The family P is called partition regular if for any finite coloring of a
set A ∈P there exists a monochromatic subset of A that belongs to P .

Using a standard “color blindness” argument, we deduce that any upward closed
family P is partition regular if and only if for any disjoint A,B ⊆ X with A∪B ∈P

either A ∈P or B ∈P . With some additional work, one can even remove the word
disjoint from this statement.

Definition 19. We say a family of sets P is closed under finite intersections if for
any A1, . . . , Ak ∈P we have A1 ∩ . . .∩ Ak ∈P .

Coming back to our previous examples, we see that the family P inf is partition
regular but not closed under finite intersections, whereas the family Pcofin is not
partition regular but closed under finite intersections. In contrast, the family P {x}
is simultaneously partition regular and closed under finite intersections. These
observations are explained by the next proposition.

Proposition 20. Let P be an upward closed family of subsets of a set X . Then P

is partition regular if and only if P ∗ is closed under finite intersections.

Proof. ( ⇒ ) Suppose P is partition regular, let A1, . . . , Ak ∈P ∗, and define Ci = Ac
i

for i = 1, . . . ,k. In view of (2.1.1) we have C1, . . . ,Ck ∉P . As P is partition regular, it
follows from C1, . . . ,Ck ∉P that

⋃k
i=1 Ci ∉P . Using (2.1.1) once more we get( k⋃

i=1
Ci

)c
=

k⋂
i=1

A i ∉P ∗.

This proves that P ∗ is closed under finite intersections.
( ⇐ ) Assume P ∗ is closed under finite intersections, let C1, . . . ,Ck ∈ P , and

assume
⋃k

i=1 Ci ∈ P . Define A i = Cc
i for i = 1, . . . ,k and note that from (2.1.1) and⋃k

i=1 Ci ∈P we have

k⋂
i=1

A i ∉P ∗.

Since P ∗ is closed under finite intersections, it follows that for some i ∈ {1, . . . ,k} we
must have A i ∉P ∗. By (2.1.1) we conclude that Ci ∈P , showing that P is partition
regular.

Proposition 21. Let P be upward closed. Then the family P ∧P ∗ = {A∩B : A ∈
P , B ∈P ∗} is partition regular.

Proof. Suppose C ∈P ∧P ∗. It suffices to show that if C = C1 ∪C2 with C1 ∩C2 =;
then either C1 ∈P ∧P ∗ or C2 ∈P ∧P ∗. Pick A ∈P and B ∈P ∗ such that C = A∩B,
and define D = C1 ∪ Ac. If D ∈ P ∗ then C1 = A∩D belongs to P ∧P ∗ and we are
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done. On the other hand, if D ∉P ∗ then Dc ∈P (by (2.1.1)) and C2 = Dc ∩B, which
implies C2 ∈P ∧P ∗ and we are also done.

2.2. Syndetic sets and thick sets

In what follows, let A−n = {m ∈N : m+n ∈ A}.

Definition 22. A set of positive integers S ⊆N is called syndetic if there exists h ∈N
such that S∪ (S−1)∪ . . .∪ (S−h)=N.

Observe that syndetic sets are characterised by the property that the distance
between consecutive elements is bounded. In other words, if s1 < s2 < . . . is an increas-
ing enumeration of elements in S then S is syndetic if and only if supk∈N(sk+1−sk)<
∞. For this reason, syndetic sets are sometimes also referred to as sets with bounded
gaps.

Definition 23. A set of positive integers T ⊆N is called thick if for every h ∈N the
intersection T ∩ (T −1)∩ . . .∩ (T −h) is non-empty.

Thick sets are characterized by the property that they contain arbitrarily long
blocks of consecutive integers, i.e., a set T ⊆N is thick if and only if for every h ∈N
there exists n ∈N such that {n,n+1, . . . ,n+h}⊆ T.

Let us use Psyn to denote the family of all syndetic subsets of N and Pthick for
the family of all thick subsets of N.

Proposition 24. The families Psyn and Pthick are dual, i.e., P ∗
syn = Pthick and

P ∗
thick =Psyn.

Proof. Since any syndetic set has bounded gaps, it must have non-empty intersection
with any thick set, because thick sets contain arbitrarily long intervals. From this, it
follows that Psyn ⊆P ∗

thick. On the other hand, if a set intersects every thick set then
its complement cannot be thick. If the complement is not thick then the set itself
must have bounded gaps, i.e., it is syndetic. This implies P ∗

thick ⊆Psyn. In conclusion,
we have Psyn =P ∗

thick, which implies P ∗
syn =P ∗∗

thick =Pthick as desired.

Definition 25. Sets belonging to Psyn ∧Pthick are called piecewise syndetic sets.

Piecewise syndetic sets are characterized by the property that they have bounded
gaps on arbitrarily large intervals. Here is a more intuitive explanation of what
this means. Let A be a subset of N and let an denote the n-th element of A,
so that a1,a2,a3, . . . becomes an increasing enumeration of elements in A. Then
A is piecewise syndetic if and only if there exists some number h ∈ N with the
following property: Somewhere in A = {a1,a2,a3, . . .} there are two consecutive
elements an,an+1 whose distance an+1 − an is at most h. Somewhere else in A
there are three consecutive elements am,am+1,am+2 such that the distance between
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the first and the second am+1 − am and the distance between the second and the
third am+2 −am+1 are at most h. Then, somewhere else in the set, there exist four
consecutive elements ak,ak+1,ak+2,ak+3 such that the distances ak+1 −ak, ak+2 −
ak+1, ak+3 −ak+2 are all at most h. And so on. This is another way of characterizing
piecewise syndeticity.

Corollary 26. Piecewise syndetic sets are partition regular.

Proof. This follows by combining Proposition 21 and Proposition 24.

Proposition 27. Let A ⊆N be piecewise syndetic. Then there exists a syndetic set
L such that for any finite, non-empty F ⊆ L the intersection⋂

n∈F
(A−n) (2.2.1)

is piecewise syndetic.

Proof. Since A is piecewise syndetic, there exist a syndetic set S and a thick set T so
that A = S∩T. Any thick set contains arbitrarily long intervals. Hence, by passing
to a subset of T if necessary, we can assume without loss of generality that

T = [a1,b1]∪ [a2,b2]∪ [a3,b3]∪ . . .

where a1 < b1 < a2 < b2, . . . ∈ N with bn − an → ∞ as n → ∞. Since S is syndetic,
there exists h ∈N for which S∪ (S−1)∪ . . .∪ (S−h+1)⊇N. Our goal is to construct
a sequence l0 < l1 < l2 < . . . ∈N such that ln+1 − ln 6 h for all n ∈N and

n⋂
k=0

(A− lk) is piecewise syndetic (2.2.2)

for all n ∈ N. Once this task has been accomplished, we can take L = {ln : n ∈ N}
and we are done. Indeed L is syndetic because it has gaps bounded by h and (2.2.2)
implies (2.2.1).

Let us now proceed with the construction of the sequence l0 < l1 < l2 < . . ., for
which we use induction. Define l0 = 0. If l0, l1, . . . , ln have already been found, then
ln+1 is constructed as follows: Define An = ⋂n

k=0(A− lk) and note that An ⊆ A ⊆ T.
Since S∪ (S−1)∪ . . .∪ (S−h+1)⊇N, we also have (S− ln−1)∪ (S− ln−2)∪ . . .∪ (S−
ln −h)⊇N. In particular, by defining An,i = An ∩ (S− ln − i) we get

An = An,1 ∪ . . .∪ An,h.

Using Corollary 26, it follows from the fact that An is piecewise syndetic that for
some i ∈ {1, . . . ,h} the set An,i is also piecewise syndetic. Define ln+1 = ln+ i and note
that

An,i = An ∩ (S− ln+1).

To finish the proof, let Tremainder = T\(T − ln+1) and note that

An,i =
(
An,i ∩ (T − ln+1)

)∪ (
An,i ∩Tremainder

)
,
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because An,i ⊆ T. Since An,i is piecewise syndetic, and the set

Tremainder ⊆ [b1 − ln+1 +1,b1]∪ [b2 − ln+1 +1,b2]∪ [b3 − ln+1 +1,b3]∪ . . .

is clearly not piecewise syndetic, we conclude from Corollary 26 that An,i ∩ (T − ln+1)
must be piecewise syndetic. Thus the set

n+1⋂
k=0

(A− lk)= An ∩ (A− ln+1)

= An ∩ (S− ln+1)∩ (T − ln+1)
= An,i ∩ (T − ln+1)

is piecewise syndetic, finishing the proof.

From Proposition 27 we immediately obtain the following interesting corollary.

Corollary 28. For any piecewise syndetic A ⊆N there exist infinitely many n ∈N
such that A∩ (A−n) is piecewise syndetic.

2.3. van der Waerden’s Theorem – equivalent
forms

van der Waerden’s Theorem is one of the key results in Combinatorial Number
Theory.

van der Waerden’s Theorem ([vdW28]). For any k ∈N and any finite coloring of
N there exists a monochromatic k-term arithmetic progression.

Figure 2.1: An example of a 3-coloring of the set {1, . . . ,27}. Can you find a monochro-
matic arithmetic progression of length 3?

Proposition 29. Fix k ∈N. The following are equivalent:
(i) (van der Waerden’s Theorem – infinitary version). For any finite coloring of N

there exists a monochromatic k-term arithmetic progression.
(ii) (van der Waerden’s Theorem – finitary version). For any r ∈ N there exists

W =W(r,k) ∈N such that if the set {1, . . . ,W} is colored using at most r colors
then there exists a monochromatic k-term arithmetic progression in {1, . . . ,W}.

(iii) Any syndetic set S ⊆N contains a k-term arithmetic progression.
(iv) For any piecewise syndetic A ⊆N there exists d ∈N and a piecewise syndetic

set B ⊆N such that for all b ∈ B we have {b+d,b+2d, . . . ,b+kd}⊆ A.
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Let us now provide a proof of Proposition 29.

Proof of (i)⇐⇒ (ii). This equivalence follows immediately from the Compactness
Theorem for finite colorings (see Section 1.5) applied to the set Y =N and the family
F = {{a,a+d, . . . ,a+ (k−1)d} : a,d ∈N}.

Proof of (i)=⇒ (iii). Let S ⊆ N be syndetic. By definition, this means there exists
h ∈ N such that S ∪ (S − 1)∪ . . .∪ (S − h) covers N. We can interpret this finite
partitioning of N as a finite coloring of N using at most h colors. According to (i), one
of the cells of the partition, say S− j, contains a k-term arithmetic progression. But
if S− j contains a k-term arithmetic progression then shifting this progression by j
shows that S also contains a k-term arithmetic progression.

Proof of (iii)=⇒ (iv). Let A ⊆N be piecewise syndetic. Using Proposition 27 we can
find a syndetic set L such that for any finite, non-empty F ⊆ L the intersection⋂

n∈F
(A−n) (2.3.1)

is piecewise syndetic. According to part (iii), the syndetic set L contains a k-term
arithmetic progression, i.e., there exist a,d ∈N such that {a,a+d, . . . ,a+(k−1)d}⊆ L.
In view of (2.3.1), the set B′ = (A−a)∩ (A−a−d)∩ . . .∩ (A−a− (k−1)d) is piecewise
syndetic. This implies that the set

B = (A−d)∩ . . .∩ (A−kd)

is also piecewise syndetic, because B = B′−d+a. It is now easy to check that for all
b ∈ B we have {b+d,b+2d, . . . ,b+kd}⊆ A as desired.

Proof of (iv)=⇒ (i). If N is colored using finitely many colors then, according to
Corollary 26, there exists a monochromatic piecewise syndetic set. By part (iv), any
piecewise sydnetic set contains a k-term arithmetic progression. It follows that there
exists a monochromatic k-term arithmetic progression.

The smallest possible number W(r,k) in part (ii) of Proposition 29 is called the
van der Waerden number for (r,k). Below is a table of known van der Waerden
numbers (or best known lower bounds):
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Figure 2.2: Since N(3,3)= 27, there exists no 3-coloring of the set {1, . . . ,27} without
a monochromatic 3-term arithmetic progression. But there exist 48 distinct colorings
of the set {1, . . . ,26} without a monochromatic 3-term arithmetic progression. A
complete list of these 48 colorings, denoted by p1, . . . , p48, is depicted above.

The best known upper bound on van der Waerden numbers that holds for all
r,k > 2 is

W(r,k)6 22r22k+9

.

2.4. Proof of van der Waerden’s Theorem

Color Focusing Lemma. Let k ∈N and suppose van der Waerden’s Theorem has
already been proven for k. Then for any finite coloring of N and any r ∈ N there
exist monochromatic piecewise syndetic sets A0, A1, . . . , Ar ⊆ N such that for all
06 i < j 6 r there exists u ∈N with

{a+u,a+2u, . . . ,a+ku : a ∈ A j}⊆ A i. (2.4.1)

Proof. We proceed by induction on r. It follows from Corollary 26 that there exists
a monochromatic piecewise syndetic set A0 ⊆N. If A0, . . . , Ar−1 have already been
found then Ar is constructed as follows. According to part (iv) of Proposition 29,
there exists a piecewise syndetic set B ⊆N and some d ⊆N such that for all b ∈ B
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we have {b+ d,b+2d, . . . ,b+ kd} ⊆ Ar−1. The finite coloring of N induces a finite
partition of B. Hence, using Corollary 26 once more, we can find a monochromatic
piecewise syndetic set Ar ⊆ B. Thus

{a+d,a+2d, . . . ,a+kd : a ∈ Ar}⊆ Ar−1. (2.4.2)

Let 06 i < j 6 r. If j < r then (2.4.1) follows from the induction hypothesis. If j = r
then we can first use the induction hypothesis to find some ũ ∈N such that

{a+ ũ,a+2ũ, . . . ,a+kũ : a ∈ Ar−1}⊆ A i. (2.4.3)

Then, taking u = ũ+d and combining (2.4.2) and (2.4.3), we obtain {a+u,a+2u, . . . ,a+
ku : a ∈ Ar}⊆ A i as desired.

Proof of van der Waerden’s Theorem. We proceed by induction on k. If k = 2 then
van der Waerden’s Theorem is trivial. So let us assume that k > 2 and that van der
Waerden’s Theorem has already been proven for k. We want to show that any finite
coloring of N admits a monochromatic (k+1)-term arithmetic progression.

Suppose N is colored using m colors. By applying the Color Focusing Lemma
with r = m we can find monochromatic piecewise syndetic sets A0, A1, . . . , Am ⊆N
such that for all 06 i < j 6 m there exists u ∈N with

{a+u,a+2u, . . . ,a+ku : a ∈ A j}⊆ A i. (2.4.4)

Since there are m+1 sets A0, A1, . . . , Am but only m colors, two of the sets must have
the same color. In other words, there exist 06 i < j 6 m such that A i and A j have
the same color. Take any u ∈ N for which (2.4.4) is satisfied and take any a ∈ A j.
Then the (k+1)-term arithmetic progression a,a+u, . . . ,a+ ku is monochromatic,
finishing the proof.

2.5. Gallai’s Theorem

What if instead of finitely coloring the positive integers N as in Schur’s Theorem
or van der Waerden’s Theorem, one colors the integer lattice points in the plane N2.
This begs the following natural quesiton.

Question 30. Is it possible to find for any finite coloring of N2 a monochromatic
square (a,b), (a+h,b), (a,b+h), (a+h,b+h)?

An affirmative answer to Question 30 is provided by Gallai’s Theorem, which can
the viewed as a higher-dimensional generalization of van der Waerden’s Theorem.
We need the following definition.

Definition 31. Let V ,W ⊆Zd. We say that W is homothetic to V if V can be shifted
and dilated to become W , i.e., there exist ~u ∈Zd and λ ∈Z\{0} such that W =λV +~u.
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Figure 2.3: Can you find a monchromatic square in this two-coloring of the 14×14
grid?

Figure 2.4: Two homothetic pyramids.

Gallai’s Theorem. Let V be a finite subset of Zd. For any finite coloring of Zd

there exists a monochromatic set of points homothetic to V .

We can reduce Gallai’s Theorem to the following.

Theorem 32. For any finite coloring of Zd there exist (a1, . . . ,ad) ∈ Zd and h ∈ N
such that the d-dimensional “cube”{

(a1 +ε1h, . . . ,ad +εdh) : ε1, . . . ,εd ∈ {0,1}
}

is monochromatic.

Proof that Theorem 32 implies Gallai’s Theorem. Let V = {~v1, . . . ,~vr} be a finite sub-
set of Zd and suppose χ : Zd → {1, . . . ,m} is a coloring of Zd using at most m colors.
Define a coloring χ̃ : Zr → {1, . . . ,m} of Zr as

χ̃(n1, . . . ,nr)= χ(n1~v1 + . . .+nr~vr), ∀(n1, . . . ,nr) ∈Zr.

By Theorem 32, there exist (a1, . . . ,ar) ∈Zr and h ∈N such that {(a1+ε1h, . . . ,ar+εrh) :
ε1, . . . ,εr ∈ {0,1}

}
is monochromatic. Define

~u = a1~v1 + . . .+ar~vr and λ= h.
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Then the set λV +~u is homothetic to V and monochromatic with respect to the
coloring χ.

Proof that Gallai’s Theorem implies Theorem 32. Suppose χ : Zd → {1, . . . ,m} is a fi-
nite coloring of Zd. Let

H = {
(ε1, . . . ,εd) : ε1, . . . ,εd ∈ {0,1}

}
denote the unit cube in Zd. By Gallai’s Theorem, we can find a homothetic image of
H that is monochromatic with respect to χ, finishing the proof.

The proof of Gallai’s Theorem is omitted.



Chapter 3

Hindman’s Theorem

3.1. Filters and Ultrafilters

Definition 33. Let X be a non-empty set. A family F of subsets of X is called a
filter on X if

(i) ;∉F and X ∈F ;
(ii) F is upward closed (see Definition 16);

(iii) F is closed under finite intersections (see Definition 19).
We call F an ultrafilter if it satisfies (i) – (iii) and, additionally,

(iv) F is maximal, i.e., no other filter on X contains F as a proper subset.

Example 34. • Recall from Section 2.1 that Pcofin = {A ⊆ X : Ac is finite} de-
notes the family of all cofinite subsets of X . This family forms a filter, called
the Fréchet filter on X .

• If (X ,τ) is a topological space with topology τ, then the neighbourhood system
U (x)= {U ⊆ X : ∃O ∈ τ with O ⊆U and x ∈O} is the collection of all neighbour-
hoods of a point x ∈ X and forms a filter.

• If (X ,A ,µ) is a probability space with sigma-algebra A and probability mea-
sure µ then the collection of measurable conull sets N = {A ∈A :µ(A)= 1} is a
filter on X .

Proposition 35. Let F be a filter on X . Then F is an ultrafilter if and only if it is
partition regular (see Definition 18).

Proof. Let us first show that if F is an ultrafilter then it is also partition regular.
Let A ∈ F be arbitrary and suppose A = A1 ∪ A2. Our goal is to prove that either
A1 ∈ F or A2 ∈ F . Suppose A1 ∉ F . Then we must have B∩ A2 6= ; for all B ∈ F ,
because if there exists B ∈ F with B∩ A2 = ; then A1 ⊇ A∩B ∈ F , contradicting
A1 ∉ F . It follows that the family {B∩ A2 : B ∈ F } does not contain the empty set

29



30 CHAPTER 3. HINDMAN’S THEOREM

and hence

G = {C ⊆ X : ∃B ∈F , B∩ A2 ⊆ C}

is a filter. Since F is maximal and F ⊆G , we get F =G . Finally, since A2 ∈G we
conclude A2 ∈F as desired.

It remains to show that if F is partition regular then it is an ultrafilter. Suppose
G is a filter on X with F ⊆ G . For any A ∈ G we must have Ac ∉ G , because
otherwise filter property (iii) would imply A∩ Ac =; ∈G , which would contradict
filter property (i). Since Ac ∉G , it also follows that Ac ∉F because F ⊆G . Since F

is partition regular and Ac ∉ F , we conclude that A ∈ F . This proves that F = G

and hence F is an ultrafilter.

Corollary 36. A filter F on X is an ultrafilter if and only if for any A ⊆ X either
A ∈F or Ac ∈F .

Proof. This is an immediate consequence of the statement of Proposition 35.

3.2. The Stone-Čech Compactification of N

Definition 37. Ultrafilters of the form δn = {A ⊆ N : n ∈ A} for n ∈ N are called
principal. All other ultrafilters are called non-principal.

Proposition 38. There exists a non-principal ultrafilter.

Proof. Consider the Fréchet filter on N, Pcofin = {A ⊆N : Ac is finite}, and order all
filters F that contain Pcofin as a subset under set-inclusion. Since an arbitrary
union of nested filters is again a filter, we see that any chain in this partial ordering
has an upper bound. Thus, by Zorn’s Lemma, there exists a maximal element p with
respect to this partial ordering. By maximality, p must be an ultrafilter. Moreover,
since p contains Pcofin as a subset, it cannot be a principal ultrafilter.

Henceforth, let βN denote the set of all ultrafilters on N and, for A ⊆N, write
A = {p ∈βN : A ∈ p}. We observe that sets of the form A are closed under intersections,
because A∩B = A∩B. In particular, {A : A ⊆N} forms the basis for a topology on
βN.

Definition 39. The space βN, endowed with the topology generated by {A : A ⊆N},
is called the Stone-Cech compactification of N.

Proposition 40. The topology on βN is compact Hausdorff.
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Proof. To show that the topology on βN is compact, it suffices to show that for any
cover of βN, consisting of elements from the basis of the topology {A : A ⊆N}, there
exists a finite subcover. Let (A i)i∈I be such a cover of βN. Consider

F = {
B ⊆N : ∃i1, . . . , ik ∈ I with Ac

i1
∩ . . .∩ Ac

ik
⊆ B

}
,

and note that F satisfies properties (ii) and (iii) of the definition of a filter.
We now distinguish two cases, the case ;∉F and the case ;∈F . If ;∉F then

F also satisfies property (i) of the definition of a filter and hence F is a filter. As we
have seen in the proof of Proposition 38, any filter can be extended to an ultrafilter
using Zorn’s Lemma. Let p ∈βN be an ultrafilter that extends F , i.e., F ⊆ p. Then
Ac

i ∈ p for all i ∈ I by construction. This implies p ∉ A i for all i ∈ I, which contradicts
the fact that (A i)i∈I covers all of βN. We conclude that ;∉F cannot happen.

So we must be in the second case, when ;∈F . This means there exist i1, . . . , ik ∈ I
with Ac

i1
∩ . . .∩ Ac

ik
=;. But then A i1 , . . . , A ik is a finite subcover and we are done

with the proof that βN is compact.
To prove that the topology on βN is Hausdorff, let p, q ∈ βN be two distinct

ultrafilters. Since p 6= q, there must either be a set in p that is not in q or there must
be a set in q that is not in p (because otherwise p and q would contain the same sets
and hence would be the same). Suppose there is a set A with A ∈ p and A ∉ q. By
Corollary 36 we have Ac ∉ p and Ac ∈ q. We have found two disjoint open sets A and
Ac that separate p and q, proving that the topology on βN is Hausdorff.

An embedding of a topological space as a dense subset of a compact space is
called a compactification.

Corollary 41. βN is a compactification of N.

Proof. The map ι : n 7→ δn that sends a positive integer n to the principal ultrafilter
δn = {A ⊆N : n ∈ A} is an embedding of N into βN. Since {δn : n ∈N}=N=βN, we see
that N embeds as a dense set in βN, proving that βN is a compactification of N.

3.3. Ellis-Numakura Lemma

Definition 42. If S is a set and · : S×S → S a binary operation on S satisfying the
associative property

(a ·b) · c = a · (b · c), ∀a,b, c ∈ S,

then (S, ·) is called a semigroup.

Perhaps the most well-known semigroup is (N,+), but other semigroups also
show up naturally in various different settings. For instance, the set X X of all
functions from X to X is a semigroup under composition ◦ : X X ×X X → X X , because
composition of functions is always associative.
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Definition 43. Suppose (S, ·) is a semigroup and τS is a topology on S. If for any
fixed b ∈ S the map a 7→ a ·b is continuous then (S, ·) is called right-topological.

Ellis-Numakura Lemma ([Ell58, Num52]). Any right-topological compact Haus-
dorff semigroup (S, ·) contains an idempotent element, i.e., an element p ∈ S satisfy-
ing p · p = p.

Proof. Order all non-empty closed sub-semigroups of (S, ·) under set-inclusion. By
compactness, any nested family of such subgroups has non-empty intersection, from
which it follows that any chain in this partial ordering possesses a lower bound.
Thus, by Zorn’s Lemma, there exists a minimal non-empty closed sub-semigroup,
which we call (G, ·). Let p ∈G be arbitrary. Observe that the set G p = {a · p : a ∈G} is
compact, because the map a 7→ a · p is continuous, and closed under the semigroup
operation · : G×G →G, because (a · p) · (b · p)= (a · p ·b) · p. In other words, (G p, ·) is
a non-empty closed sub-semigroup of (G, ·). By minimiality, it follows that G =G p.
In particular, there exists some element q ∈G such that q · p = p.

Next, consider the set V = {a ∈ G : a · p = p}. Since q ∈ V , we know that V is
non-empty. Also, V is compact because a 7→ a · p is continuous and the topology is
Hausdorff, and V is closed under the semigroup operation · : G×G →G, because if
a ·p = p and b ·p = p then (a ·b)·p = p. Hence V is a non-empty closed sub-semigroup
of G. Invoking the minimality assumption on G once more, we conclude that V =G.
In particular, p ∈V , which implies p · p = p.

3.4. Algebra on the Stone-Čech compactification
of N

Our next goal is to lift the additive arithmetic structure on N to its Stone-Čech
compactification βN. As a preparatory step, let us define the shift of a subset of N by
an element in βN.

Recall that for any set A ⊆N and any positive integer n the shift of A by n is
defined as

A−n = {m ∈N : n+m ∈ A}.

There is a natural way of extending this shift operation from integers to ultrafilters.
Given a set A ⊆N and an ultrafilter q ∈βN, we define the shift of A by q as

A− q = {n ∈N : A−n ∈ q}.

Note that if δn = {A ⊆N : n ∈ A} is the principal ultrafilter supported on n then the
shift of A by δn coincides with the shift of A by n, that is,

A−δn = A−n.
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The ultrafilter-shift is a set function onN and interacts nicely with other set functions,
such as unions, intersections, or set-theoretic complements. More precisely, it is
straightforward to check that for any A,B ⊆ N and any p, q ∈ βN the following
properties are satisfied:

1. (A∩B)− q = (A− q)∩ (B− q);
2. (A∪B)− q = (A− q)∪ (B− q);
3. Ac − q = (A− q)c;
4. A ⊆ B =⇒ A− q ⊆ B− q.

We are now ready to define addition on βN. Given two ultrafilters p, q ∈ βN,
define their sum p+ q as

p+ q = {A ⊆N : A− q ∈ p}.

Lemma 44. If p and q are ultrafilters on N then p+ q is an ultrafilter on N.

Proof. Let us first establish that p+q is a filter by showing that it satisfies the three
filter conditions:

• We begin by proving that ; 6∈ p+ q. By definition, we have ;−n = ; for all
n ∈N. It follows that ;− q =;, and hence ;− q ∉ p. This shows that ;∉ p+ q.

• Next, let us verify that p+ q is upward closed. Let A ⊆ B ⊆N be given. From
A ⊆ B it follows that A− q ⊆ B− q and, since p is upward closed, we conclude
A− q ∈ p =⇒ B− q ∈ p. By definition, this means A ∈ p+ q =⇒ B ∈ p+ q.

• Finally, let us verify that p+q is closed under finite intersections. Suppose both
A and B belong to p+q. This means that both A−q and B−q belong to p. Since
p is closed under finite intersections, it follows that (A−q)∩(B−q)= (A∩B)−q
belongs to p. We get that A∩B ∈ p+ q as desired.

Now that we have established that p+ q is a filter, we can use Corollary 36 to show
that p+ q is an ultrafilter. Let A ⊆ N. Since p is an ultrafilter, we either have
A− q ∈ p or (A− q)c ∈ p. Since (A− q)c = Ac − q, it follows that either A− q ∈ p or
Ac − q ∈ p. By the definition of p+ q, we thus have A ∈ p+ q or Ac ∈ p+ q. In view of
Corollary 36, this proves that p+ q is an ultrafilter.

Usually, the symbol + is reserved for commutative operations. It is therefore
important to note that addition on βN is not commutative, despite the fact that the
symbol + is used. This means that in general p+ q 6= q+ p. The reason why we use
+ to denote this operation on βN is because it naturally extends addition on N: If δm
and δn are the principal ultrafilters supported on m and n respectively then

δm +δn = δm+n.

This also implies that the canonical map ι : n 7→ δn described in the proof of Corol-
lary 41 is not just a continuous embedding of N into βN, it is in fact a homomorphic
continuous embedding of (N,+) into (βN,+).

Proposition 45. (βN,+) is a right-topological compact Hausdorff semigroup.
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Proof. It follows from Proposition 40 that βN is compact Hausdorff. To verify that
(βN,+) is a semigroup, we need to show that addition on βN is associative, i.e., for
all p, q, r ∈βN one has (p+ q)+ r = p+ (q+ r). Note that for any A ⊆N and n ∈N we
have

(A−n)− r = {m ∈N : (A−n−m) ∈ r}
= {m ∈N : (A−m) ∈ r}−n
= (A− r)−n.

Using this observation, we get

(A− r)− q = {n ∈N : (A− r)−n ∈ q}
= {n ∈N : (A−n)− r ∈ q}
= {n ∈N : (A−n) ∈ q+ r}
= A− (q+ r).

It follows that A ∈ (p+q)+r if and only if A ∈ p+(q+r), which proves that (p+q)+r =
p+ (q+ r).

It remains to prove that (βN,+) is right-topological. Fix q ∈βN. In order to prove
that p 7→ p+ q is continuous, it suffices to show that for any A ⊆N the preimage of
A is open, because sets of this form generate the topology on βN. By definition, the
pre-image of A under p 7→ p+ q equals {p ∈βN : p+ q ∈ A}. We have

{p ∈βN : p+ q ∈ A}= {p ∈βN : A ∈ p+ q}
= {p ∈βN : A− q ∈ p}

= A− q.

Since A− q is open, we are done.

With Proposition 45 at hand, we can think of + : βN×βN→βN as a continuous
(right-topological) lift of + : N×N→N from N to its Stone-Čech compactification.

3.5. Idempotent Ultrafilters and IP sets

Theorem 46. (βN,+) contains an idempotent element, i.e., there exists an ultrafilter
p ∈βN satisfying p+ p = p.

Proof. The existence of an idempotent ultrafilter follows directly by combining
Proposition 45 with the Ellis-Numakura Lemma.

Connecting different realms of mathematics is both beautiful and powerful.
Idempotent ultrafilters are a perfect example of this phenomenon. Their shier
existence is hard to comprehend, yet they from an astounding bridge between the
topological group structure on βN and the additive group structure on N.
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Definition 47. Given D ⊆N, the set of finite sums of D is

FS(D)=
{ ∑

n∈F
n : F ⊆ D finite and non-empty

}
.

For example,
• if D = {x} then FS(D)= {x};
• if D = {x, y} then FS(D)= {x, y, x+ y};
• if D = {x, y, z} then FS(D)= {x, y, z, x+ y, x+ z, y+ z, x+ y+ z}
• if D = {x1, x2, x3, . . .} then FS(D)= {xi1 + . . .+ xik : k ∈N, i1 < . . .< ik ∈N}.

Definition 48. A set A ⊆N is called an IP-set if there exists x1, x2, x3, . . . ∈N with
FS({x1, x2, x3, . . .})⊆ A.

Theorem 49. If p = p+ p is an idempotent ultrafilter on N then any A ∈ p is an
IP-set.

Proof. Using p = p + p, we get (A − p) ∈ p, and hence A ∩ (A − p) ∈ p, because
ultrafilters are closed under finite intersections. Let x1 be an arbitrary element in
A∩ (A− p) and observe that A∩ (A− x1) ∈ p by the definition of A− p.

Next, define A1 = A∩ (A− x1). As before, we have A1 ∩ (A1 − p) ∈ p. Thus, taking
x2 to be any element in A1 ∩ (A1 − p) with x2 > x1, we have A1 ∩ (A1 − x2) ∈ p. So far,
we have FS({x1, x2})= {x1, x2, x1 + x2}⊆ A.

Once again, letting A2 = A1 ∩ (A1 − x2), we have A2 ∩ (A2 − p) ∈ p. Taking x3 ∈
A2 ∩ (A2 − p) with x3 > x2, we have A2 ∩ (A2 − x3) ∈ p as well as FS({x1, x2, x3}) =
{x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3}⊆ A.

Following this procedure, we can construct an infinite sequence x1 < x2 < x3 <
. . . ∈N such that FS({x1, x2, x3, . . .})⊆ A as desired.

3.6. Hindman’s Finite Sums Theorem

Recall Schur’s Theorem, which asserts that for any finite coloring of N there exists
{x, y}⊆N such that FS({x, y})= {x, y, x+ y} is monochromatic. The following result is
one of the cornerstones of Ramsey Theory and offers an infinitary generalization of
Schur’s result.

Hindman’s Finite Sums Theorem ([Hin74]). For any finite coloring of N there
exists an infinite set D ⊆N such that FS(D) is monochromatic.

Proof. SupposeN is colored using finitely many colors. Let p = p+p be an idempotent
ultrafilter on N, which exists due to Theorem 46. Since ultrafilters are partition
regular (cf. Proposition 35), there exists a monochromatic set A ⊆N with A ∈ p. By
Theorem 49, A contains FS(D) for an infinite set D ⊆N, finishing the proof.
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3.7. Hindman’s Finite Unions Theorem

Definition 50. Let F (N) denote the set of all finite non-empty subsets of N. Given
α1,α2,α3, . . . ∈F (N), the set of finite unions of {α1,α2,α3, . . .} is

FU({α1,α2,α3, . . .})=
{
αn1 ∪ . . .∪αnk : k ∈N, n1, . . . ,nk ∈N

}
.

Hindman’s Finite Unions Theorem ([Hin74]). For any finite coloring of F (N)
there exist mutually disjoint α1,α2,α3, . . . ∈ F (N) such that FU({α1,α2,α3, . . .}) is
monochromatic.

For the proof of Hindman’s Finite Unions Theorem, we need a short technical
lemma.

Lemma 51. Let D ⊆N be infinite. For any m ∈N there exists n ∈ FS(D) such that
n ≡ 0 mod m.

Proof. By the pigeonhole principle, the infinite set D contains m numbers x1, x2, . . . , xm
belonging to the same residue class modulo m. Then n = x1 + . . .+ xm is a number in
FS(D) divisible by m.

Proof of Hindman’s Finite Unions Theorem. Recall that any positive integer n pos-
sesses a unique binary expansion,

n =
∞∑

i=0
εi2i−1

where ε1,ε2,ε3, . . . ∈ {0,1} are called the digits in the binary expansion of n and all
but finitely many of them are equal to 0. Using the binary expansion, we can find a
natural correspondence between elements in N and elements in F (N). Indeed, we
can associate the digits of a natural number n with the indicator function of a finite
set. More formally, we have the map φ : N→F (N) given by

n 7→φ(n)= {i ∈N : the i-th digit in the binary expansion of n is 1}.

By uniqueness of the binary expansion, φ is a bijection between N and F (N).
Now suppose we are given a finite coloring of F (N). We can pull back this finite

coloring to a finite coloring of N via the map φ. By Hindman’s Finite Sums Theorem,
there exist x1 < x2 < . . . ∈ N such that FS({x1, x2, . . .}) is monochromatic. Our hope
is that this monochromatic finite sums set in N corresponds to a monochromatic
finite unions set in F (N). However, this is not true on the nose because φ(xi + x j)
is not necessarily equal to φ(xi)∪φ(x j), which in turn means that the image of
FS({x1, x2, . . .}) under φ is not necessarily a finite unions set. But this problem can
be fixed by passing to a subset of FS({x1, x2, . . .}). More precisely, our goal is to find
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y1, y2, . . . such that FS({y1, y2, . . .})⊆FS({x1, x2, . . .}) and such that φ(y1),φ(y2), . . . are
pairwise disjoint. It then follows that for all i1, . . . , ik ∈N we have

φ(yi1 + . . .+ yik )=φ(yi1)∪ . . .∪φ(yik )

and hence φ(FS({y1, y2, . . .}))=FU(φ(y1),φ(y2), . . .). Since FS({x1, x2, . . .}) is monochro-
matic and FS({y1, y2, . . .})⊆FS({x1, x2, . . .}), the finite unions set FU(φ(y1),φ(y2), . . .) is
monochromatic too and the proof is complete. It remains to construct y1, y2, . . . with
these properties.

Take y1 = x1. If y1 < . . .< yn have already been found then let m ∈N be any num-
ber with 2m > yn. Also, choose r sufficiently large such that y1, . . . , yn ∈FS({x1, . . . , xr}).
According to Lemma 51, we can find yn+1 ∈FS({xr+1, xr+2, . . .}) such that 2m divides
yn+1. Note that with this choice of yn+1 we have

FS({y1, . . . , yn+1})=FS({y1, . . . , yn})∪ (
FS({y1, . . . , yn})+ yn+1

)⊆FS({x1, x2. . . .}).

Moreover, since 2m | yn+1, the first m digits in the binary expansion of yn+1 are zero.
Contrarily, since yi < 2m for all i = 1, . . . ,n, the only non-zero digits in the binary
expansion of yi are among the first m digits. This proves that φ(yn+1) and φ(yi) are
disjoint for all i = 1, . . . ,n.

Corollary 52. Any finite coloring of the semigroup (F (N),∪) admits a monochro-
matic isomorphic image of itself.





Chapter 4

Roth’s Theorem

4.1. Natural density in N

Consider the following two sets of integers,

A = {n ∈N : n is even} and B = {n2 : n ∈N}.

How do the “sizes” of A and B compare to one another? Both sets have the same
cardinality (they are both countably infinite), and neither one is a subset of the other.
So from a set-theoretic point of view there seems to be no way of differentiating
the largess of A from the largeness of B. Yet, intuitively, it seems as if A contains
more numbers than B, because it is “more likely” for a positive integer to be an even
number than it is for it to be a perfect square. In other words, A occupies a bigger
proportion of the positive integers than B. This intuitive concept of comparative
size in the positive integers is formalized using the notion of natural density, which
measures the relative proportion of a set with respect to all of N. With the help of
this notion, we can turn vague statements such as “almost no integer is the sum of
two squares” or “the probability for two integers to be coprime is 6

π2 ” into meaningful
mathematical theorems.

Definition 53. The lower density and upper density of a set A ⊆ N are defined
respectively as

d(A) = liminf
N→∞

|A∩ {1, . . . , N}|
N

and d(A) = limsup
N→∞

|A∩ {1, . . . , N}|
N

.

Observe that d(A)6 d(A) always. If d(A)= d(A) then the limit

d(A) = lim
N→∞

|A∩ {1, . . . , N}|
N

exists and we call this number the density of A. In the literature, the density of a
set is sometimes also referred to as the natural density or asymptotic density, but for

39
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simplicity we will stick to the simpler term.

We start by mentioning some basic properties of upper and lower density func-
tions. Let A,B ⊆N:

• (Unit Range). 06 d(A)6 d(A)6 1.
• (Monotonicity). If A ⊆ B then d(A)6 d(B) and d(A)6 d(B).
• (Super- and Sub-Additivity). If A and B are disjoint then d(A)+ d(B) 6

d(A∪B) and d(A∪B)6 d(A)+d(B).
• (Complement Property). d(Ac)= 1−d(A) and d(Ac)= 1−d(A).
• (Shift Invariance). For n ∈N we have d(A−n)= d(A) and d(A−n)= d(A).

The following proposition is often helpful when calculating the density of sets that
admit a natural enumeration or parametrization, such as for example { f (n) : n ∈N}
where f : N→N is an increasing function.

Proposition 54. If A = {a1 < a2 < a3 < . . .}⊆N then

d(A)= liminf
n→∞

n
an

and d(A)= limsup
n→∞

n
an

.

Proof. Since

|A∩ {1, . . . ,an}|
an

= n
an

,

we immediately see that d(A)6 liminfn→∞ n
an

. For the other direction, note that if
N ∈N is arbitrary and n is the smallest integer satisfying an > N then

|A∩ {1, . . . , N}|
N

= n−1
N

> n−1
an

.

This proves that d(A) > liminfn→∞ n−1
an

. Since liminfn→∞ n−1
an

= liminfn→∞ n
an

, we
have that d(A)> liminfn→∞ n

an
, which finishes the proof that d(A)= liminfn→∞ n

an
.

The proof for the statement on upper density follows an analogous argument to the
one that we have just seen for the lower density.

4.2. Arithmetic progressions in sets of positive
density

The following strengthening of van der Waerden’s Theorem was conjectured
by Erdős and Turán in 1936 and eventually proved by Szemerédi in 1975 using
ingenious techniques from graph theory.

Szemerédi’s Theorem ([Sze75]). Let k ∈ N. Any set A ⊆ N with positive upper
density contains a k-term arithmetic progressions.
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The cases k = 1 and k = 2 of Szemerédi’s Theorem are trivial. The purpose of this
section is to present a proof of the first non-trivial case, which is k = 3. This special
case was first established by Roth in 1953 and the proof relies on ideas from Fourier
analysis.

Roth’s Theorem. Any set A ⊆ N with positive upper density contains a 3-term
arithmetic progressions.

Szemerédi’s Theorem has been generalized in many different ways. One of the
most striking results in this direction is the following landmark theorem.

Green-Tao Theorem. The prime numbers P = {2,3,5,7,11, . . .} contain a k-term
arithmetic progression for every k ∈N.

The following is a famous open conjecture in combinatorial number theory and
offers a simultaneous generalization of both Szemerédi’s Theorem and the Green-Tao
Theorem.

Erdős’ conjecture. Let k ∈N. Any set A ⊆N with
∑

n∈A
1
n =∞ contains a k-term

arithmetic progression.

4.3. Fourier Analysis of finite cyclic groups

For every N ∈ N let ZN = {0,1, . . . , N −1} denote the set of integers modulo N.
When endowed with modular addition, ZN forms a finite cyclic group of order N. Let
e(x) be shorthand for e2πix, x ∈R.

Definition 55. The Fourier transform of a function f : ZN → C is defined for all
ξ ∈ZN as

f̂ (ξ) = 1
N

∑
n∈ZN

f (n)e
(− ξn

N
)
.

Proposition 56. The Fourier transform on ZN has the following properties:
• The Fourier Inversion Formula tells us that any function f : ZN → C can

be fully recovered from its Fourier coefficients using the formula

f (n)= ∑
ξ∈ZN

f̂ (ξ)e
(ξn

N
)
.

• Parseval’s Identity says that the Fourier transform is a unitary operator in
the sense that

1
N

∑
n∈ZN

f (n)g(n)= ∑
ξ∈ZN

f̂ (ξ) ĝ(ξ);
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• An important special case of Parseval’s Identity is Plancherel’s Identity,
which asserts that

1
N

∑
n∈ZN

| f (n)|2 = ∑
ξ∈ZN

| f̂ (ξ)|2;

• Given f , g : ZN →C, the Convolution Formula states that the Fourier trans-
form of the convolution ( f ∗ g)(n) = 1

N
∑

m∈ZN f (n−m)g(m) equals the product
of the Fourier transforms of f and g, i.e.,

(�f ∗ g)(ξ)= f̂ (ξ) ĝ(ξ), ∀ξ ∈ZN .

Proof of the Fourier Inversion Formula. Using the definition of f̂ (ξ), we have for any
n ∈ZN , ∑

ξ∈ZN

f̂ (ξ)e
(ξn

N
)= ∑

ξ∈ZN

(
1
N

∑
m∈ZN

f (m)e
(− ξm

N
))

e
(ξn

N
)

= 1
N

∑
m∈ZN

f (m)

( ∑
ξ∈ZN

e
(ξ(n−m)

N
))

.change order of summation

Since
∑
ξ∈ZN e(ξk/N)= 0 for any non-zero k ∈ZN , it follows that

∑
ξ∈ZN

e
(ξ(n−m)

N
)={

N, if n = m,
0, otherwise.

Hence 1
N

∑
m∈ZN f (m)

(∑
ξ∈ZN e(ξ(n−m)/N)

)= f (n), finishing the proof.

Proof of Parseval’s Identity. Using the Fourier Inversion Formula, we obtain

1
N

∑
n∈ZN

f (n)g(n)= 1
N

∑
n∈ZN

( ∑
ξ∈ZN

∑
ζ∈ZN

f̂ (ξ) ĝ(ζ)e
( (ξ−ζ)n

N
))

= ∑
ξ∈ZN

∑
ζ∈ZN

f̂ (ξ) ĝ(ζ)

(
1
N

∑
n∈ZN

e
( (ξ−ζ)n

N
))

.change order of summation

Similar to what we observed above, we have

1
N

∑
n∈ZN

e
( (ξ−ζ)n

N
)={

1, if ξ= ζ,
0, otherwise.

Therefore, we obtain
∑
ξ∈ZN

∑
ζ∈ZN f̂ (ξ) ĝ(ζ)

( 1
N

∑
n∈ZN e((ξ−ζ)n/N)

) = ∑
ξ∈ZN f̂ (ξ) ĝ(ξ)

and the claim follows.

Proof of Plancherel’s Identity. This follows immediately by taking f = g in Parseval’s
Identity .

Proof of the Convolution Formula. This is a straightforward calculation. Indeed,

(�f ∗ g)(ξ)= 1
N

∑
n∈ZN

( f ∗ g)(n)e
(− ξn

N
)
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= 1
N

∑
n∈ZN

(
1
N

∑
m∈ZN

f (n−m)g(m)

)
e
(− ξn

N
)

= 1
N

∑
m∈ZN

g(m)

(
1
N

∑
n∈ZN

f (n−m)e
(− ξn

N
))

.

change order of summation

Using the substitution m+k = n, we can write

1
N

∑
m∈ZN

g(m)

(
1
N

∑
n∈ZN

f (n−m)e
(− ξn

N
))

=
(

1
N

∑
m∈ZN

g(m)e
(− ξm

N
))(

1
N

∑
k∈ZN

f (k)e
(− ξk

N
))

= f̂ (ξ) ĝ(ξ),

completing the proof.

Interpretation of discrete Fourier transform. Let CZN = { f : ZN →C} denote
the space of all functions from ZN to C. It is easy to see that CZN is an N-dimensional
complex vector space (i.e., isomorphic to CN). There are two natural orthogonal
bases to consider for this vector space. The first basis arises from the canonical basis
vectors δ0,δ1, . . . ,δN−1, where

δm(n)=
{

1 if n = m,
0 otherwise.

It is clear that any f : ZN →C can be expressed uniquely as a linear combination of
Dirac delta functions δm. This is the usual, canonical representation. Yet there is
another, equally natural orthogonal basis for CZN to consider: The character basis
e0, e1, . . . , eN−1 where

eξ(n)= e
(ξn

N
)
.

The discrete Fourier transform defined in Definition 55 is nothing more than a
change of basis from the canonical basis to the character basis.

4.4. Linear homogeneous equations in 3
variables

Let a,b, c ∈ Z\{0} and let N ∈ N be a large positive integer. In this section we
investigate the following basic question: What sets A ⊆ {0,1, . . . , N −1} contain a
solution (or perhaps even many solutions) to the linear homogeneous equation

ax+by+ cz = 0. (4.4.1)
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In other words, what are necessary and/or sufficient conditions on a set A ⊆ {0,1, . . . , N−
1} such that there exist x, y, z ∈ A satisfying (4.4.1).

Example 57.
• Schur’s Theorem tells us that if N is sufficiently large then for any set A ⊆

{1, . . . , N} either A or its complement {1, . . . , N}\A contains a solution to x+y= z.
Note the “Schur’s equation” x+ y = z corresponds to equation (4.4.1) with
a = b = 1 and c =−1.

• As we will see below (see Proposition 63), Roth’s Theorem tells us that if δ> 0
and N is sufficiently large then any set A ⊆ {1, . . . , N} with |A|> δN contains a
3-term arithmetic progression, which is equivalent to containing a solution to
the equation x+ y= 2z. This corresponds to a solution of equation (4.4.1) with
a = b = 1 and c =−2.

Given N ∈N and a,b, c ∈Z\{0}, we are interested in estimating the number of
solutions to the equation ax+by+ cz = 0, i.e., the cardinality of the set{

(x, y, z) ∈ A× A× A : ax+by+ cz = 0
}
.

Proposition 58. Let N, N ′ ∈N and a,b, c ∈Z\{0} with N(|a|+ |b|+ |c|)6 N ′. Then
for any triple x, y, z ∈ {0,1, . . . , N −1} the following are equivalent:

(i) ax+by+ cz = 0;
(ii) ax+by+ cz ≡ 0 mod N ′.

Proof. If there are x, y, z ∈ A with ax+by+ cz = 0 then we also have ax+by+ cz ≡
0 mod N ′. On the other hand, if there exist x, y, z ∈ A with ax+ by+ cz ≡ 0 mod N ′

then we must have ax+ by+ cz = 0 because the assumption N(|a| + |b| + |c|) 6 N ′

implies |ax+by+ cz| < N ′.

In what follows, if N < N ′ then we identify ZN = {0,1, . . . , N −1} with a subset of
ZN ′ = {0,1, . . . , N ′−1} in the obvious manner. In particular, if A ⊆ {0,1, . . . , N−1} then
we can think of A as a subset of both ZN and ZN ′ .

Corollary 59. Let N, N ′ ∈ N and a,b, c ∈ Z\{0} with N(|a| + |b| + |c|) 6 N ′. Then
for any set A ∈ {0,1, . . . , N − 1}, the number of solutions from A to the equation
ax+ by+ cz = 0 in (Z,+) is the same as the number of solutions from A to the
congruence equation ax+by+ cz ≡ 0 mod N ′ in (ZN ′ ,+).

Proof. This follows straightaway from Proposition 58.

Proposition 60. Let N ∈N and a,b, c ∈Z\{0}. Suppose N is coprime to abc. Then
for all A1, A2, A3 ⊆ {0,1, . . . , N −1} we have∣∣{(x, y, z) ∈ A1 × A2 × A3 : ax+by+ cz ≡ 0 mod N

}∣∣ = N2 ∑
ξ∈ZN

Â1(aξ)Â2(bξ)Â3(cξ),

where Â i : ZN →C denotes the Fourier transform of the indicator function 1A i of A i.
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Proof. We begin by showing that �aA1(ξ)= Â1(aξ). Using the definition of the Fourier
transform, we get

�aA1(ξ)= 1
N

∑
n∈ZN

1aA1(n)e
(−nξ

N
)
.

Since a and N are coprime, the map n 7→ an is a bijection from ZN to ZN . We can
thus substitute an for n and get

�aA1(ξ)= 1
N

∑
n∈ZN

1aA1(an)e
(−anξ

N
)
.

Using once more that a and N are coprime, we get 1aA1(an)= 1A1(n) and so

�aA1(ξ)= 1
N

∑
n∈ZN

1aA1(an)e
(−anξ

N
)

= 1
N

∑
n∈ZN

1A1(n)e
(−anξ

N
)

= Â1(aξ).

An analogous argument proves �bA2(ξ)= Â2(bξ) and ĉA3(ξ)= Â3(cξ).
Next, using the Fourier Inversion Formula, we get

1aA1(n)= ∑
ξ1∈ZN

Â1(aξ1)e
(ξ1n

N
)
.

1bA2(n)= ∑
ξ2∈ZN

Â2(bξ2)e
(ξ2n

N
)
,

1cA3(n)= ∑
ξ3∈ZN

Â3(cξ3)e
(ξ3n

N
)
.

We now obtain∣∣{(x, y, z) ∈ A1 × A2×A3 : ax+by+ cz ≡ 0 mod N
}∣∣

= ∑
n,m∈ZN

1aA1(n)1bA2(m)1cA3(−n−m)

= ∑
n,m∈ZN

∑
ξ1,ξ2,ξ3∈ZN

Â1(aξ1)Â2(bξ2)Â3(cξ3)e
(ξ1n+ξ2m−ξ3(n+m)

N
)

= ∑
ξ1,ξ2,ξ3∈ZN

Â1(aξ1)Â(bξ2)2 Â3(cξ3)
∑

n,m∈ZN

e
(ξ1n+ξ2m−ξ3(n+m)

N
)
.

Note that the inner sum in m vanishes unless ξ2 = ξ3, whereas the inner sum in n
vanishes unless ξ1 = ξ3. Thus the only non-zero contribution arises when ξ1 = ξ2 = ξ3,
yielding∣∣{(x, y, z) ∈ A1 × A2 × A3 : ax+by+ cz ≡ 0 mod N

}∣∣= N2 ∑
ξ∈ZN

Â1(aξ)Â2(bξ)Â3(cξ),

as desired.
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4.5. Pseudorandom sets

Figure 4.1: Depicted above are two grayscale images labeled (a) and (b). If each image
has a resolution of N pixels, we can use the set {0,1, . . . , N −1} to index the pixels in
a linear order, typically from left to right and top to bottom. If we also associate each
pixel’s intensity with a value between 0 (black) and 1 (white), a grayscale image can
be thought of as a function f : {0,1, . . . , N −1}→ [0,1]. This point of view allows us to
associate to each grayscale image a Fourier transform using Definition 55. For the
images (a) and (b), their respective Fourier transforms are depicted in (c) and (d).
We observe that image (a), which has a clear structure with meaningfully arranged
pixels, exhibits a Fourier transform where certain frequencies are dominant while
others are less pronounced. In contrast, image (b), often referred to as “white noise”,
shows no bias among frequencies; its Fourier transform gives roughly equal value to
all frequencies, with a flat power spectral density.

Definition 61. Let A ⊆ {0,1, . . . , N −1} and ε> 0. We say that A is ε-pseudorandom
if |Â(ξ)|6 ε holds for all ξ ∈ZN\{0}.

Proposition 62. Let N ∈ N, a,b, c ∈ Z\{0}, and ε,δ > 0. Suppose N is coprime to
abc and A1, A2, A3 ⊆ {0,1, . . . , N −1} satisfy |A i|> δN. If at least one of the A i is
ε-pseudorandom then A1 × A2 × A3 contains at least δN2(δ2 −ε) many solutions to
the congruence equation ax+by+ cz ≡ 0 mod N.

Proof. Without loss of generality, let us assume that A1 is ε-pseudorandom; if one of
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the other two sets is the one that is ε-pseudorandom then by symmetry the argument
of the proof remains the same, just with the order switched.

In view of Proposition 60, we have∣∣{(x, y, z) ∈ A1 × A2 × A3 : ax+by+ cz ≡ 0 mod N
}∣∣ = N2 ∑

ξ∈ZN

Â1(aξ)Â2(bξ)Â3(cξ)

Note that Â i(0) = |A i |
N . Hence, splitting the sum over ξ into the zero term and the

non-zero terms and applying the triangle inequality yields∣∣{(x, y, z) ∈ A1 × A2 × A3 : ax+by+ cz ≡ 0 mod N
}∣∣

= |A1| |A2| |A3|
N

+ N2 ∑
ξ∈ZN
ξ 6=0

Â1(aξ)Â2(bξ)Â3(cξ)

>
|A1| |A2| |A3|

N
− N2 ∑

ξ∈ZN
ξ 6=0

∣∣Â1(aξ)Â2(bξ)Â3(cξ)
∣∣

>
|A1| |A2| |A3|

N
− N2

(
sup

ξ∈ZN\{0}

∣∣Â1(aξ)
∣∣)

︸ ︷︷ ︸
controlled by

pseudorandomness

( ∑
ξ∈ZN

∣∣Â2(bξ)Â3(cξ)
∣∣2)

︸ ︷︷ ︸
controlled by
Plancherel

.

Due to the pseudorandomness assumption on the set A1, we can estimate

sup
ξ∈ZN\{0}

∣∣Â1(aξ)
∣∣6 ε.

According to the Cauchy-Schwarz inequality and Plancherel’s Identity, we have the
upper bound∑

ξ∈ZN

|Â2(bξ) Â3(cξ)|6
( ∑
ξ∈ZN

|Â2(bξ)|2
) 1

2
( ∑
ξ∈ZN

|Â3(cξ)|2
) 1

2

=
( ∑
ξ∈ZN

|Â2(ξ)|2
) 1

2
( ∑
ξ∈ZN

|Â3(ξ)|2
) 1

2

=
( 1

N

∑
n∈ZN

|1A2(n)|2
) 1

2
( 1

N

∑
n∈ZN

|1A3(n)|2
) 1

2

= |A2| 1
2 |A3| 1

2

N
.

Putting everything together and using |A i|> δN leaves us with the estimate∣∣{(x, y, z) ∈ A1 × A2 × A3 : ax+by+ cz ≡ 0 mod N
}∣∣> |A1| |A2| |A3|

N
− εN|A2|

1
2 |A3|

1
2

> δN(δ2 −ε).
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4.6. Roth’s Theorem – equivalent forms

Proposition 63. The following are equivalent:
(i) (Roth’s Theorem – infinitary version). Any A ⊆N with positive upper density

contains a 3-term arithmetic progressions.
(ii) (Roth’s Theorem – finitary version). For every δ> 0 there exists N(δ) ∈N such

that if N > N(δ) then any set A ⊆ {1, . . . , N} with |A|> δN contains a 3-term
arithmetic progression.

Proof. The implication (ii)=⇒ (i) is obvious. For the reverse implication (i)=⇒ (ii),
we shall prove the contrapositive. Suppose there exists some δ> 0 and a sequence
N1 < N2 < . . . ∈ N such that for every k ∈ N there is a set Ak ⊆ {1, . . . , Nk} with
|Ak|> δNk admitting no 3-term arithmetic progression. By refining the sequence
N1 < N2 < . . . if necessary, we can assume without loss of generality that Nk+1 > 8Nk.
Consider the set

A =
∞⋃

k=1

(
Ak +3Nk

)
.

Note that d(A)> 0 because

d(A)= limsup
N→∞

|A∩ {1, . . . , N}|
N

> limsup
k→∞

|A∩ {1, . . . ,4Nk}|
4Nk

> limsup
k→∞

|Ak +3Nk|
4Nk

= 1
4

(
limsup

k→∞
|Ak|
Nk

)
> δ/4.

Also, A contains no 3-term arithmetic progression. Indeed, if there were a,b ∈ N
for which {a,a+b,a+2b} ∈ A then, in particular, we would have a+b ∈ Ak +3Nk for
some k ∈N. Since b 6 a+ b 6 4Nk, we get a+2b 6 8Nk. Hence a+2b ∈ Ak +3Nk
because Nk+1 > 8Nk. But from a+ b,a+2b ∈ Ak +3Nk it follows that b 6 Nk and
hence a > 2Nk. Therefore a ∈ Ak +3Nk as well. This would imply that Ak +3Nk
contains a 3-term arithmetic progression, a contradiction to the assumption that
Ak does not contain a 3-term arithmetic progression. In conclusion, A is a set with
positive upper density containing no 3-term arithmetic progression, finishing the
proof of the contrapositive.
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4.7. Proof of Roth’s Theorem

This section presents a proof of Roth’s Theorem. The core idea, known as the
density increment argument, involves iteratively increasing the density until the
presence of three-term arithmetic progressions becomes evident. In what follows, let
R(δ) refer to the statement:

R(δ): “There exists N(δ) ∈N such that if N > N(δ), any set A ⊆ {0,1, . . . , N−1}
with |A|> δN contains a 3-term arithmetic progression.”

Density Increment Lemma. For every δ ∈ (0,1], if R(δ) is false then R(δ+δ2/16)
is also false.

Proof of Roth’s Theorem assuming the Density Increment Lemma. Define

∆= inf{δ ∈ (0,1] : R(δ) is true}.

In light of Proposition 63, Roth’s Theorem is equivalent to the assertion that ∆= 0.
By way of contradiction, assume ∆ > 0. Then R(δ) is true for δ > ∆ and false for
δ<∆. Choose some δ∗ ∈ (0,1] for which δ∗ <∆ and δ∗+δ2∗ /16>∆. Then R(δ∗+δ2∗ /16)
is true and R(δ∗) is false. However, by the Density Increment Lemma, if R(δ∗) is
false then R(δ∗+δ2∗ /16) is false. Since R(δ∗+δ2∗ /16) cannot be true and false at the
same time, we have reached a contradiction.

Lemma 64. For all δ> 0, all sufficiently large odd N ∈N, and all A ⊆ {0,1, . . . , N −1}
with |A|> δN the following holds: If A is δ2

5 -pseudorandom then A contains a 3-term
arithmetic progression.

Proof. Let B be either all even numbers in A or all odd numbers in A, whichever
is larger. It follows from the assumption that N is odd and parity considerations
that a triple (x, y, z) ∈ B× A×B satisfies the congruence equation x+ z ≡ 2y mod N
if and only if it satisfies the integral equation x+ z = 2y. Hence, to prove that A
contains a 3-term arithmetic progression it suffices to show that B× A×B contains
a non-trivial solution to x+ z ≡ 2y mod N.

Since A is δ2

5 -pseudorandom and |A|, |B|> δ
2 N, it follows from Proposition 62

that B×A×B contains at least δN2

2 (δ
2

4 − δ2

5 )= δ3

40 many solutions to x+ z ≡ 2y mod N.
But this number also includes trivial solutions of the form x = y= z. Since there are
at most N trivial solutions, the number of non-trivial solutions to x+ z ≡ 2y is at
least δ3N2

40 −N. So as long as N is larger than 40
δ3 , there is at least one non-trivial

solution. It is worth pointing out that if N is much larger than 40
δ3 , then this method

gives in fact many non-trivial solutions.

For the proof of the Density Increment Lemma, we need the following classical
result on Diophantine approximation.
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Dirichlet’s Approximation Theorem. For any real number α and any Q > 1
there exist integers p and q with 16 q 6Q and∣∣∣α− p

q

∣∣∣< 1
qQ

.

Proof of the Density Increment Lemma. Suppose R(δ) is false. This means there
exists arbitrarily large N ∈N and a set A ⊆ {0,1, . . . , N −1} with |A|> δN admitting
no 3-term arithmetic progression. From this we want to show that there exist
arbitrarily large N ′ ∈ N and a set A′ ⊆ {0,1, . . . , N ′ − 1} with |A′| > (δ+ δ2/16)N ′

admitting no 3-term arithmetic progression.
First, by replacing N with N +1 if necessary, we can assume without loss of

generality that N is odd. Then, using Lemma 64, we deduce that A cannot be
δ2/5-pseudorandom, because if it were then it would contain a 3-term arithmetic
progression. Since A is not δ2/5-pseudorandom, this means there exists ξ ∈ZN\{0}
such that |Â(ξ)| > δ2/5. Recall that

Â(ξ)= 1
N

∑
n∈ZN

1A(n)e
(−nξ

N
)
.

Since ξ 6= 0, we have 1
N

∑
n∈ZN e

(−nξ
N

)= 0, and hence |Â(ξ)| > δ2/5 implies∣∣∣ 1
N

∑
n∈ZN

(
1A(n)−δ)

e
(−nξ

N
)∣∣∣> δ2

5
.

Next, we use Dirichlet’s Approximation Theorem (with α= ξ/N and Q =p
N) to find

integers p and q with 16 q 6
p

N and∣∣∣ ξ
N

− p
q

∣∣∣< 1

q
p

N
. (4.7.1)

We now divide {0,1, . . . , N−1} into progressions mod q. There are q such progressions
each with approximately N/q elements. (In fact, each progression has more than
N/q−1 and less than N/q+1 elements, but this small rounding error will not make
any difference.) We now subdivide these progressions into M intervals each, where
M is to be chosen later. Thus there are qM such intervals in all, and each interval
contains approximately N/(qM) elements. Let I denote a typical such interval. We
claim that on I the function n 7→ e(nξ/N) is close to being constant. Indeed, if n1,n2
are two arbitrary elements in I then∣∣e(n1ξ

N
)− e

(n2ξ
N

)∣∣= ∣∣e( (n1−n2)ξ
N

)−1
∣∣= ∣∣e( (n1−n2)ξ

N − (n1−n2)p
q

)−1
∣∣6 2π|n1 −n2|

∣∣∣ ξ
N

− p
q

∣∣∣,
where the second to last equality follows because n1 and n2 belong to the same
residue class mod q and hence n1−n2 is divisible by q. Using (4.7.1) and |n1−n2|6
N/M we conclude that ∣∣e(n1ξ

N
)− e

(n2ξ
N

)∣∣6 2π
p

N
qM

.
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Combined with the above, we find that

δ2N
5

<
∣∣∣ ∑
n∈ZN

(
1A(n)−δ)

e
(−nξ

N
)∣∣∣6∑

I

∣∣∣∑
n∈I

(
1A(n)−δ)

e
(−nξ

N
)∣∣∣

6
∑
I

∣∣∣∑
n∈I

(
1A(n)−δ)∣∣∣+ 2πN

3
2

qM
.

So if we pick M = 40π
p

N
δ2q then

δ2N
8

<∑
I

∣∣∣∑
n∈I

(
1A(n)−δ)∣∣∣.

Since
∑

I
∑

n∈I(1A(n)−δ)= 0 and there are qM intervals, it follows that there exists
some I with ∑

n∈I

(
1A(n)−δ)

>
δ2N

16qM
.

Recall that I contains N/(qM) elements, and so the relative density of A within I
is at least δ+ δ2

16 . Now we take N ′ = |I| and translate and dilate the set I so that
it corresponds to the set {0,1, . . . , N ′−1}. The image of the set A ∩ I under this
translation and dilation we call A′. Note that arithmetic progressions are preserved
under translation and dilation; in particular, since A contained no 3-term arithmetic
progressions, the same is true for A′. We have thus extracted a set A′ of density
at least δ+ δ2

8 lying in {0,1, . . . , N ′−1} containing no 3-term arithmetic progressions.

Since I has size about N
qM = δ2pN

40π and N can be made arbitrarily large, we see that
N ′ can be made arbitrarily large. This shows that R(δ+δ2/16) is false.

4.8. Behrend’s Example

Roth’s Theorem addresses the question of how small a set can be whilst still
admitting 3-term arithmetic progressions. On the flip side of the coin, one can ask
about how large a set can be whilst avoiding 3-term arithmetic progressions. Even
though these two questions are formally equivalent, they still offer contrasting per-
spectives on the problem. The following construction is due to Behrend and provides
a surprisingly large subset of {1, . . . , N} avoiding 3-term arithmetic progressions.

Behrend’s Theorem. For all but finitely many N ∈N there is a set A ⊆ {1, . . . , N}
which contains no 3-term arithmetic progressions and satisfies |A|> N exp(−c

√
log N).

Here c is an absolute positive constant.

Proof. Consider points (x1, . . . , xK ) with xi ∈ {0,1, . . . ,d}; there are (d+1)K of them.
For each such point, the number

∑K
i=1 x2

i belongs to the interval
[
0,Kd2]. Since
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there are only (Kd2 +1) integers in the interval
[
0,Kd2] but (d+1)K many tuples

(x1, . . . , xK ), there exists n 6 Kd2 such that the equation n = ∑
x2

i has more than
(d+1)K /

(
Kd2 +1

)
solutions among the tuples that we consider. In other words, there

is a sphere containing many points (x1, . . . , xK ) with xi ∈ {0,1, . . . ,d}. The argument
rests on the fact that any line can intersect a sphere in at most two points.

Let A be the set of numbers
∑K

i=1 xi(2d+1)i−1 where (x1, . . . , xK ) is a point on our
sphere. Note that A ⊆ {1, . . . , (2d+1)K } and |A|> (d+1)K /

(
Kd2 +1

)
. We claim that

A has no 3-term arithmetic progression. For, if∑
xi(2d+1)i−1 + ∑

zi(2d+1)i−1 = ∑
2yi(2d+1)i−1

then xi + zi = 2yi, as xi, yi, and zi are all smaller than or equal to d. In other words
the points (x1, . . . , xK ), (y1, . . . , yK ), and (z1, . . . , zK ) all lie on a line, which is impossible
because they lie on the surface of a sphere.

To finish the proof, take K about size
√

log N, and d about size e
p

log N . Then A is
a subset of {1, . . . , N} with |A|> N exp(−c

√
log N) admitting no 3-term progressions.

In a surprising breakthrough, it was proven in February 2023 that for all but
finitely many N ∈N, any set A ⊆ {1, . . . , N} with |A|> N exp(−c(log N)

1
11 ) contains a

3-term arithmetic progression.



Chapter 5

Sárközy’s Theorem

5.1. Intersective sets

One of the goals of additive combinatorics is to study the arithmetic and combi-
natorial properties of difference sets A− A. In this section, we investigate difference
sets of sets with positive density. In particular, we focus on the following question:

If A ⊆N has positive density then how large is A−A and what arithmetic
structure does it contain?

The next definition offers one way to explore the above question.

Definition 65. A set R ⊆N is intersective if for all sets A ⊆N with d(A)> 0, there
exists n ∈ R with n ∈ A− A.

Note that if R is an intersective set then one can remove a finite amount of
elements from R and it remains an intersective set. It follows that a set R is
intersective if and only if for all sets A of positive upper density the intersection
R∩ (A− A) has infinite cardinality.

Example 66. For any a ∈N the set aN= {an : n ∈N} is intersective because any set
A of positive upper density contains two numbers of the same residue class mod a.
This and other examples and non-examples of intersective sets are summarized in
the following table:

Intersective Non-intersective
N Any finite set

aN aN+b for any b 6≡ 0 mod a
{n2 : n ∈N} {n2 +1 : n ∈N}

P+ t for t ∈ {−1,1} P+ t for any t ∈Z\{±1}
D−D for any infinite D ⊆N {2n : n ∈N}

53
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5.2. The compactness principle for density

The purpose of this section is to prove the following density analogue of the
Compactness Theorem for finite colorings that we have seen in Section 1.5.

Compactness Theorem for positive density. Let δ0 > 0, and let F be a shift-
invariant collection of finite subsets of N. (Here, shift-invariant means that if F ∈F

then F + t ∈F for all t ∈N.) The following are equivalent:
(i) For any set A ⊆N with d(A)> δ0 there exists F ∈F with F ⊆ A.

(ii) For any δ> δ0 there exists N(δ) ∈N such that for any N > N(δ) and any set
A ⊆ {1, . . . , N} with |A|> δN one can find F ∈F with F ⊆ A.

For the proof we will need two technical lemmas. For the reminder of this section,
given two sets A,B ⊆ N, we say that a shift of A is a subset of B if there exists
t ∈N∪ {0} such that A+ t ⊆ B.

Lemma 67. Suppose N ∈N, δ> 0, and A ⊆ {1, . . . , N} with |A|> δN. For all ε ∈ (0,1)
there exist M > εN and a set A′ ⊆ {1, . . . , M} such that a shift of A′ is a subset of A,
and

min
16m6M

|A′∩ {1, . . . ,m}|
m

> δ−ε.

Proof. If |A∩ {1, . . . ,m}|> (δ−ε)m holds for all m = 1, . . . , N then we can simply take
M = N and A′ = A and are done. Otherwise, let x be the largest number in {1, . . . , N}
for which |A∩ {1, . . . , x}| < (δ−ε)x. Pick M = N − x and A′ = {n ∈N : n+ x ∈ A}. Clearly,
A′+ x ⊆ A. Note that

δ−ε> |A∩ {1, . . . , x}|
x

>
|A∩ {1, . . . , N}|− (N − x)

N
> δ− N − x

N
= δ− M

N
,

which implies that M > εN. Finally, we have

|A′∩ {1, . . . ,m}| = |A∩ {x+1, . . . , x+m}| = |A∩ {1, . . . , x+m}|︸ ︷︷ ︸
>(δ−ε)(x+m)

−|A∩ {1, . . . , x}|︸ ︷︷ ︸
<(δ−ε)x

> (δ−ε)m,

completing the proof.

Lemma 68. Let δ> 0. Suppose we have N1 < N2 < . . . ∈N and for every k ∈N a set
Ak ⊆ {1, . . . , Nk} with |Ak|> δNk. Then there exists a set A ⊆N with

inf
x∈N

|A∩ {1, . . . , x}|
x

> δ,

and with the property that for any finite set F ⊆ A there exists some k ∈N such that
a shift of F is a subset of Ak.
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Proof. Define εk = N
− 1

2
k . By Lemma 67, for every k we can find Mk >

√
Nk and a set

A′
k ⊆ {1, . . . , Mk} such that a shift of A′

k is a subset of Ak and |A′
k∩{1, . . . , x}|> (δ−εk)x

for all x = 1, . . . , Mk. We can identify the indicator functions 1A′
k

with elements in
{0,1}N. Note that the finite set {0,1}, endowed with the discrete topology, is a compact
metric space. By Tychonoff ’s theorem, {0,1}N endowed with the product topology is
therefore also a compact metric space. Since in compact metric spaces, sequences
possess converging subsequences, there exists k1 < k2 < . . . ∈N and A ⊆N such that
1A′

ki
converges to 1A ∈ {0,1}N as i →∞. By the nature of the topology, for every x ∈N

the equality

A∩ {1, . . . , x}= A′
ki
∩ {1, . . . , x} (5.2.1)

holds for all but finitely many i ∈N. From this it follows that a shift of A∩ {1, . . . , x}
is a subset of Aki and that

|A∩ {1, . . . , x}|
x

> δ−εki

and hence |A∩ {1, . . . , x}|> δx.

Proof of Compactness Theorem for positive density. The implication (ii) =⇒ (i) is
obvious, so we focus on the implication in the other direction. By way of contradiction,
suppose (ii) is false. This means there exists δ> δ0, a sequence N1 < N2 < N3 < . . . ∈N,
and sets Ak ⊆ {1, . . . , Nk} such that |Ak|> δNk and no set F ∈F satisfies F ⊆ Ak. By
Lemma 68, there exists a set A ⊆N with d(A)> δ and with the property that for any
finite set F ⊆ A there exists some k ∈N such that a shift of F is a subset of Ak. In
view of (i), there exists F ∈F with F ⊆ A. This means a shift of F appears in Ak for
some k ∈N. Since shifts of F also belong to F , this directly contradicts that Ak does
not contain an element of F as a subset.

Corollary 69. For any set R ⊆N the following are equivalent:
(i) R is intersective.

(ii) For every δ> 0 there exists N(δ) ∈N such that for any N > N(δ) and any set
A ⊆ {1, . . . , N} with |A|> δN one can find n ∈ R with n ∈ A− A.

Proof. Simply apply the Compactness Theorem for positive density to the family of
sets F = {{a,b}⊆N : b−a ∈ R} and the statement follows readily.

5.3. Sárközy’s Theorem – equivalent forms

Sárközy’s Theorem. For any A ⊆ N with d(A) > 0 the set of differences A − A
contains a perfect square.

Proposition 70. The following are equivalent:
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(i) (Sárközy’s Theorem – infinitary version). Any A ⊆ N with positive upper
density contains {n,n+ r2} for some n, r ∈N.

(ii) (Sárközy’s Theorem – finitary version). For every δ> 0 there exists N(δ) ∈N
such that if N > N(δ) then any set A ⊆ {1, . . . , N} with |A| > δN contains
{n,n+ r2} for some n, r ∈N.

Proof. This follows from Corollary 69 applied to the set R = {n2 : n ∈N}.

5.4. Coboundaries in ZN

Throughout this section, we identity the set {0,1, . . . , N −1} with the cyclic group
ZN =Z/NZ and the set of all functions f : ZN →R with the N-dimensional real vector
space RN . For every p > 0, the associated p-norm ‖.‖p is

‖ f ‖p =
(

1
N

∑
n∈ZN

| f (n)|p
) 1

p

.

An important tool in the estimation of averages and norms of arithmetic functions is
the Cauchy-Schwarz inequality, which asserts that for all f , g : ZN →R we have∣∣∣∣ 1

N

N∑
n=1

f (n)g(n)
∣∣∣∣6 ‖ f ‖2‖g‖2. (5.4.1)

It will also be convenient to introduce the shift operator T on ZN . Given a function
f : ZN →R, let Tm f : ZN →R denote the shift of the function f by m ∈N∪ {0}, i.e.,

Tm f (n)= f (n+m).

Observe that Tm1(Tm2 f )= Tm1+m2 f holds for all m1,m2 ∈N∪ {0}.

Definition 71. Let Q ∈N. We say that g : ZN →R is a Q-step coboundary on ZN if
there exists f : ZN →R such that g = 1

2 ( f −TQ f ).

Lemma 72. Let H,Q, M, N ∈ N and assume that 2h | Q for all h = 1, . . . ,H. If
g = 1

2 ( f −TQ f ) is a Q-step coboundary on ZN then∥∥∥∥ 1
M

M∑
m=1

Tm2
g
∥∥∥∥

2
6 ‖ f ‖2 ·

(
2Q
M

+ 1
H

)
.

Proof. Note that for any h = 1, . . . ,H we have

1
M

M∑
m=1

Tm2
g = 1

M

M∑
m=1

T(m+h)2 g+ 1
M

h∑
j=1

T j2
g− 1

M

h∑
j=1

T(M+ j)2 g,
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from which it follows that∥∥∥∥ 1
M

M∑
m=1

Tm2
g
∥∥∥∥

2
6

∥∥∥∥ 1
H

H∑
h=1

(
1
M

M∑
m=1

T(m+h)2 g
)∥∥∥∥

2
+ 2H‖g‖2

M
.

Changing the order of summation, applying the triangle inequality, and afterwards
using the Cauchy-Schwarz inequality, we have∥∥∥∥ 1

H

H∑
h=1

(
1
M

M∑
m=1

T(m+h)2 g
)∥∥∥∥

2
=

∥∥∥∥ 1
M

M∑
m=1

(
1
H

H∑
h=1

T(m+h)2 g
)∥∥∥∥

2

6
1
M

M∑
m=1

∥∥∥∥ 1
H

H∑
h=1

T(m+h)2 g
∥∥∥∥

2

6
(

1
M

M∑
m=1

∥∥∥ 1
H

H∑
h=1

T(m+h)2 g
∥∥∥2

2

) 1
2

.

We can now expand the square to find that

1
M

M∑
m=1

∥∥∥ 1
H

H∑
h=1

T(m+h)2 g
∥∥∥2

2
= 1

H2

H∑
h1,h2=1

1
M

M∑
m=1

1
N

∑
n∈ZN

g(n+ (m+h1)2)g(n+ (m+h2)2)

= 1
H2

H∑
h1,h2=1

1
M

M∑
m=1

1
N

∑
n∈ZN

g(n)g(n+2m(h2 −h1)+h2
2 −h2

1)

6 ‖g‖2 ·
(

1
H2

H∑
h1,h2=1

∥∥∥∥ 1
M

M∑
m=1

T2m(h2−h1) g
∥∥∥∥

2

)
.

Recall that g = f −TQ f . Let d = 2(h2−h1) and b =Q/d. If h1 6= h2 then the sum
1
M

∑M
m=1 T2m(h2−h1) g is telescoping and we have∥∥∥∥ 1
M

M∑
m=1

T2m(h2−h1) g
∥∥∥∥

2
=

∥∥∥∥ 1
M

M∑
m=1

Tdm f − 1
M

M∑
m=1

Td(m+b) f
∥∥∥∥

2
6

2b‖ f ‖2

M
6

Q‖ f ‖2

M
.

On the other hand, if h1 = h2 then∥∥∥∥ 1
M

M∑
m=1

T2m(h2−h1) g
∥∥∥∥

2
= ‖g‖2.

We conclude that

1
H2

H∑
h1,h2=1

∥∥∥∥ 1
M

M∑
m=1

T2m(h2−h1) g
∥∥∥∥

2
6

‖g‖2

H
+ Q‖ f ‖2

M
.

Combining all estimates above yields∥∥∥∥ 1
M

M∑
m=1

Tm2
g
∥∥∥∥

2
6

2H‖g‖2

M
+‖g‖

1
2
2 ·

(‖g‖2

H
+ Q‖ f ‖2

M

) 1
2

6
2H‖g‖2

M
+ ‖g‖2

H
+ Q‖g‖

1
2
2 ‖ f ‖

1
2
2

M
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6 ‖ f ‖2 ·
(
2Q
M

+ 1
H

)
.

where in the last step we used 2H 6Q and ‖g‖2 6 ‖ f ‖2.

5.5. Energy Concentration

Definition 73. Given a non-zero function f : ZN →C, we define its energy concen-
tration as

E( f )= ‖ f ‖2
2

‖ f ‖2
1

.

For γ ∈ [1,∞) let S(γ) refer to the statement:

S(γ): “There exist c(γ) > 0 and d(γ) > 1 such that for all all x, N ∈ N with
x> 3 and all non-zero f : ZN → [0,∞) with E( f )6 γ there exists M ∈N
with x6 M 6 xd(γ) such that

1
M

M∑
m=1

(
1
N

∑
n∈ZN

f (n) f (n+m2)
)
> c(γ)‖ f ‖2

1.”

Energy Increment Lemma. For any γ > 1, if S(γ) is a true statement, then
S

(
1.06 ·γ)

is also a true statement.

Proof. Suppose S(γ) is true and let c(γ) > 0 and d(γ) > 1 be as guaranteed by the
statement of S(γ). Let H ∈N be any integer that satisfies

1
H

6
c(γ)
24γ

, (5.5.1)

and define D = (H!). Now take

c(1.06 ·γ)= 1
4D

and d(1.06 ·γ)= 2d(γ)+ log(2H).

Now, let x> 2 and f : ZN → [0,∞) with E( f )6 1.06 ·γ be given. We distinguish two
cases:
Case 1. For all 16 m6 x

D we have ‖ f −TD2m2
f ‖2 6 1

2‖ f ‖2.
If we are in Case 1 then we take M = x and we have

1
M

M∑
m=1

(
1
N

∑
n∈ZN

f (n) f (n+m2)
)
>

1
M

⌊
M
D

⌋∑
m=1

(
1
N

∑
n∈ZN

f (n) f (n+D2m2)
)

>
1
M

⌊
M
D

⌋∑
m=1

(
‖ f ‖2

2 −
‖ f ‖2

2

2

)
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>
1

4D
‖ f ‖2

2

> c(1.06 ·γ)‖ f ‖2
1,

where for the last estimate we have used ‖ f ‖1 6 ‖ f ‖2 and the definition of c(1.06 ·γ).
If we are not in Case 1, then we must be in:

Case 2. There exists 16 m6 x
D such that ‖ f −TD2m2

f ‖2 > 1
2‖ f ‖2.

In this case, write Q = D2m2, so that ‖ f −TQ f ‖2 > 1
2‖ f ‖2. Define

f1 = 1
2

(
f +TQ f

)
and f2 = 1

2
(
f −TQ f

)
.

Observe that f = f1 + f2 and 〈 f1, f2〉 = 0, and hence by Pythagoras’s theorem

‖ f ‖2
2 = ‖ f1‖2

2 +‖ f2‖2
2.

Combined with ‖ f2‖2
2 > 1

16‖ f ‖2
2, we conclude that

E( f1)= ‖ f1‖2
2

‖ f1‖2
1
= ‖ f1‖2

2

‖ f ‖2
1
= ‖ f ‖2

2 −‖ f2‖2
2

‖ f ‖2
1

< ‖ f ‖2
2 − 1

16‖ f ‖2
2

‖ f ‖2
1

= 15
16 E( f )

and therefore, since 16
15 > 1.06, we have

E( f1)6 γ.

Define y= 2Hx2. Invoking the hypothesis that S(γ) is true (and also using ‖ f1‖1 =
‖ f ‖1), we can find M ∈N with y6 M 6 yd(γ) such that

Em∈[M]En∈ZN f1(n) f1(n+m2)> c(γ)‖ f ‖2
1.

By the definition of y and d(1.06γ), we have yd(γ) 6 xd(1.06γ) and hence x 6 M 6
xd(1.06γ) as desired. In light of Lemma 72 we have

1
M

∑M
m=1

( 1
N

∑
n∈ZN f2(n) f1(n+m2)

)
1
M

∑M
m=1

( 1
N

∑
n∈ZN f1(n) f2(n+m2)

)
1
M

∑M
m=1

( 1
N

∑
n∈ZN f2(n) f2(n+m2)

)
 6 ‖ f ‖2

2 ·
(
2Q
M

+ 1
H

)
.

Note that since Q 6 x2 and 2H · x2 6 M we have 2Q
M 6 1

H . Combined with ‖ f ‖2
2 6

2γ‖ f ‖2
1 and our estimate on H from (5.5.1), we get

‖ f ‖2
2 ·

(
2Q
M

+ 1
H

)
6

c(γ)
6

‖ f ‖2
1.

It follows that

1
M

M∑
m=1

(
1
N

∑
n∈ZN

f (n) f (n+m2)
)
> c(γ)‖ f ‖2

1 −
c(γ)
2

‖ f ‖2
1 > c(1.06 ·γ)‖ f ‖2

1,

completing the proof.
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5.6. Proof of Sárközy’s Theorem

Proof of Sárközy’s Theorem. Suppose A ⊆ {1, . . . , N} with |A| = δN is given. Note that
‖1A‖2

1 = δ2 and ‖1A‖2
2 = δ, and hence

E(1A)6
1
δ

.

Let c = c(1
δ
) and d = d(1

δ
) be as in the statement S(1

δ
). Since S(1

δ
) is a true statement

due to the Energy Increment Lemma, there exists M ∈N with 36 M 6 3d for which

1
M

M∑
m=1

(
1
N

N∑
n=1

1A(n)1A(n+m2 mod N)
)
> cδ2.

If N is sufficiently large, this means there exists at least one pair n,m ∈ N with
16 n < N −M2 and 16 m6 M such that 1A(n)1A(n+m2 mod N)> 0. This implies
that {n,n+m2}⊆ A, completing the proof.
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Rado’s Theorem

6.1. Brauer’s Theorem

Brauer’s Theorem. For every r, c,k ∈N there exists B(r,k, c) ∈N such that for all
N >B(r,k, c) and all r-colorings of the set {1, . . . , N} there exist a,d ∈ {1, . . . , N} such
that {a,a+d, . . . ,a+ (k−1)d}∪ {cd} is monochromatic.

Recall that given a set A ⊆N and a number t ∈N we define A/t = {n ∈N : nt ∈ A}.

Proposition 74. For every `, c,k ∈ N there exists B×(`,k, c) ∈ N such that for all
N >B(r,k, c) and all sets C ⊆N with C∪C/2∪. . .∪C/`= {1, . . . , N} there exist a,d ∈N
with {a,a+d, . . . ,a+ (k−1)d}∪ {cd}⊆ C.

Proof. Let B×(`,k, c)=W(`, ck`), where W(`, ck`) is the van der Waerden number
for (`, ck`). Suppose N > B×(`,k, c) and C∪C/2∪ . . .∪C/` = {1, . . . , N}. By van der
Waerden’s Theorem, there exists j ∈ {1, . . . ,`} such that the set C/ j contains a ck`-
term progression {ã, ã+ d̃, . . . , ã+ (ck`− 1)d̃}. Since c`d̃ 6 N, there exists some
i ∈ {1, . . . ,`} such that c jd̃ ∈ C/i. Now define a = jã and d = i jd̃ and observe that
{a,a+d, . . . ,a+ (k−1)d}∪ {cd}⊆ C as desired.

Proof that Proposition 74 implies Brauer’s Theorem. We use induction on the num-
ber of colors. If r = 1 the result holds trivially. So suppose Brauer’s Theorem
has already been proven for r colors. Define B(r + 1,k, c) = ` ·B×(`,k, c), where
`= B(r,k, c). Let N > B(r+1,k, c) and {1, . . . , N} = C0 ∪C1 ∪ . . .∪Cr corresponds to
an (r +1)-coloring of {1, . . . , N}. Define N ′ = bN/`c and note that N ′ > B×(`,k, c).
If C0 ∪C0/2∪ . . .∪C0/` = {1, . . . , N ′} then by Proposition 74 the color C0 contains
{a,a+d, . . . ,a+ (k−1)d}∪ {cd} and we are done. Otherwise, there exists t ∈ {1, . . . , N ′}
such that t ·{1, . . . ,`}∩C0 =;. Then C1/t∪ . . .∪Cr/t is an r-coloring of {1, . . . ,`} and by
the induction hypothesis, we can find {ã, ã+ d̃, . . . , ã+ (k−1)d̃}∪ {cd̃}⊆ Ci/t for some
i ∈ {1, . . . , r}. Now, taking a = tã and d = td̃ implies {a,a+d, . . . ,a+(k−1)d}∪{cd}⊆ Ci,
completing the proof.

61
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6.2. Application to Quadratic residues

In number theory, an integer x is called a quadratic residue modulo p if it is
congruent to a perfect square modulo p; i.e., if there exists an integer y such that

x ≡ y2 mod p.

Otherwise, x is called a quadratic nonresidue modulo p.
The numbers modulo p can be split into two sets:

Q = {x ∈ {0,1, . . . , p−1} : x = y2 for some y}

(the set of quadratic residues) and

N = {0,1, . . . , p−1}\Q

(the set of quadratic nonresidues). For any odd prime p, the number of non-zero
quadratic residues modulo p is p−1

2 , and similarly, the number of quadratic non-
residues is also p−1

2 .

Corollary 75. Let k ∈N. For all sufficiently large prime numbers p there exists a
sequence of k consecutive numbers n,n+1, . . . ,n+k−1 ∈ {1,2, . . . , p−1} all of which
are quadratic residues mod p.

Proof. We can think of the partitioning of {1,2, . . . , p−1} into quadratic residues
and nonresidues as a 2-coloring. By Brauer’s Theorem, if p is sufficiently large
then we can find a and d such that {a,a+d, . . . ,a+ (k−1)d}∪ {d} are all quadratic
residues or quadratic nonresidues. Note that a quadratic residue divided by a
quadratic residue is a quadratic residue, and a quadratic nonresidue divided by a
quadratic nonresidue also yields a quadratic residue. So in either case, if we divide
the progression {a,a+d, . . . ,a+ (k−1)d} by its common difference d modulo p, we
obtain k consecutive quadratic residues mod p.

Corollary 76. Let k ∈N. For all sufficiently large prime numbers p there exists a
sequence of k consecutive numbers n,n+1, . . . ,n+k−1 ∈ {1,2, . . . , p−1} all of which
are quadratic nonresidues mod p.

Proof. Let d denote the smallest quadratic nonresidue in {0,1, . . . , p−1}. Note that
since d is a quadratic nonresidue, at least one of its prime factors must be a quadratic
nonresidue. But since d is the smallest quadratic nonresidue, we conclude that d is
a prime number. By Corollary 75, if p is sufficiently large then we can find a string
n,n+1, . . . ,n+k!(k−1)−1 of quadratic residues. If d < k! then

n,n+d, . . . ,n+ (k−1)d
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is a progression of length k of quadratic residues whose difference is a quadratic
nonresidue. Diving by d mod p yields k consecutive quadratic nonresidues as
desired.

If d > k! then we can find c ∈ {1, . . . ,k!−1} such that d ≡ c mod k!. Observe that
b−d

j is an integer for all j = 1,2, . . . ,k and

0< b−d
j

+d < d.

So for j = 1, . . . ,k the number ( b−d
j +d) j = b+( j−1)d is a product of positive numbers

smaller than d. Since all positive numbers smaller than d are quadratic residues,
we conclude that b,b+ d, . . . ,b+ (k−2)d is a progression of length k of quadratic
residues whose difference is a quadratic nonresidue. As before, diving by d mod p
yields k consecutive quadratic nonresidues.

6.3. Rado’s Theorem for Single Equations

Consider a homogeneous linear equation with integer coefficients in the variables
x1, . . . , xr,

a1x1 +a2x2 + . . .+arxr = 0, (6.3.1)

for a1,a2, . . . ,ar ∈Z\{0}.

Definition 77. An equation of the form (6.3.1) is called partition regular if for every
finite coloring of N there exists a monochromatic solution (or equivalently, if for
any finite partition of N one of the cells of the partition contains a solution to the
equation).

Example 78. Interestingly, not every homogeneous linear equation is partition
regular. For instance, the equation 2x+2y = z is not. To verify this claim, recall
that every positive integer n can be written uniquely as n = 5sm for some s ∈N∪ {0}
and m ∈N with 5 - m. Then, assign the color blue to n if m ≡ 1 (mod 5), red if m ≡ 2
(mod 5), green if m ≡ 3 (mod 5), and yellow if m ≡ 4 (mod 5). This yields a coloring
of N with four colors. It is now straightforward to check that if x and y are one color
then 2x+2y must be a different color. This proves that the equation 2x+2y= z is
not partition regular.

Rado’s Theorem for single equations. Let a1,a2, . . . ,ar ∈ Z\{0}. The equation
a1x1+a2x2+ . . .+arxr = 0 is partition regular if and only if there exists a non-empty
set I ⊆ {1, . . . , r} such that

∑
i∈I ai = 0.

Proof. First, let us show that if
∑

i∈I ai = 0 for some I ⊆ {1, . . . , r} then the equation is
partition regular. Define I+ = {i ∈ I : ai > 0}, I− = {i ∈ I : ai < 0} and I c = {1, . . . , r}\I.
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Also, let c = ∑
i∈I+ ai, b = ∑

i∈I c ai, and observe that
∑

i∈I− ai = −c. By Brauer’s
Theorem, we can find n,d ∈N such that {n,n+1, . . .n+bd}∪ {cd} are monochromatic.
We can now take

xi =


n, if i ∈ I+
n+bd, if i ∈ I−
cd, if i ∈ I c.

By construction, the elements x1, . . . , xr are monochromatic, and we have

a1x1 +a1x2 + . . .+arxr =
∑

i∈I+
aixi +

∑
i∈I−

aixi +
∑
i∈I c

aixi

= cn− c(n+bd)+ cbd = 0.

It remains to show that if the equation is partition regular then there exists a
set I ⊆ {1, . . . , r} with

∑
i∈I ai = 0. Let p be any prime bigger than |a1|+ . . .+|ar|. Note

that every positive integer n ∈N can be uniquely written as n = psm for some s> 0
and some m ∈N with gcd(p,m)= 1. Define a coloring χ : N→ {1,2, . . . , p−1} via

χ(n)= m mod p

where m is the unique number in the decomposition n = psm described above. We
claim that this coloring does not admit a monochromatic solution to the equation
a1x1 + a2x2 + . . .+ arxr = 0 unless

∑
i∈I ai = 0 for some non-empty set I ⊆ {1, . . . , r}.

Indeed, suppose x1, . . . , xr ∈N with χ(x1)= . . .= χ(xr) and a1x1 +a2x2 + . . .+arxr = 0.
We can write each xi uniquely as xi = psi mi with gcd(p,mi) = 1. Consider s =
min{s1, . . . , sr} and define I = {1 6 i 6 r : si = s}. Taking yi = xi p−s, we note that
χ(xi) = χ(yi) and hence χ(y1) = . . . = χ(yr) and a1 y1 +a2 y2 + . . .+ar yr = 0. We thus
have

0= a1 y1 +a2 y2 + . . .+ar yr ≡
∑
i∈I

aimi mod p,

and hence
∑

i∈I ai ≡ 0 mod p because all mi take on the same non-zero residue
mod p. Since p > |a1|+ . . .+|ar|, from

∑
i∈I ai ≡ 0 mod p we deduce that

∑
i∈I ai = 0

as claimed.

6.4. Rado’s Theorem

Rado’s Theorem for single equations has a generalization to systems of equa-
tions. Suppose instead of one equation as in (6.3.1), we are given a system of d
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homogeneous liner equations in the variables x1, . . . , xr, i.e.,

a11x1 +a12x2 + . . .+a1rxr = 0
a21x1 +a22x2 + . . .+a2rxr = 0

...
ad1x1 +ad2x2 + . . .+adrxr = 0

(6.4.1)

where ai j are the coefficients and x1, x2, . . . , xr the variables.

Definition 79. A system of equations of the form (6.4.1) is called partition regular
if for every finite coloring of N there exists a monochromatic solution (or equivalently,
if for any finite partition of N one of the cells of the partition contains numbers
x1, x2, . . . , xr that form a solution to all the equations in (6.4.1)).

A system of linear equations can be compactly represented as a matrix equation.
Indeed, let A be the d× r matrix

A=


a11 a12 · · · a1r
a21 a22 · · · a2r

...
...

. . .
...

ad1 ad2 · · · adr

 .

This matrix conveniently encodes the coefficients of the system of equations in (6.4.1),
where the i-th row of A corresponds to the coefficients of the variables in the i-th
equation. The variables x1, x2, . . . , xr can be grouped into a column vector x of size
r×1:

x=


x1
x2
...

xr

 .

Thus, the system of equations (6.4.1) can be written in matrix form as

A ·x= 0, (6.4.2)

where A= (ai j) ∈Zd×r is the coefficient matrix, x= (x1, . . . , xr)T ∈Zr×1 is the vector of
variables, and 0= (0, . . . ,0)T is the zero vector. This is a compact representation of
(6.4.1).

Definition 80. We say a matrix A= (ai j) ∈Zd×r satisfies the columns condition if
there exist m ∈N, a partition of the set [r] = {1,2, . . . , r} into m+1 disjoint subsets
I0, I1, I2, . . . , Im, and for all ` ∈ {1, . . . ,m} and i ∈ I0 ∪ I1 ∪ . . .∪ I`−1 a rational number
λ(`)

i ∈Q such that ∑
j∈I0

ai j = 0,
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∑
j∈I1

ai j =
∑
j∈I0

λ(1)
j ai j,

...∑
j∈Im

ai j =
∑

j∈I0∪I1∪...∪Im−1

λ(m)
j ai j.

Rado’s Theorem (full generality). Let A= (ai j) ∈Zd×r be an integer matrix. The
equation

A ·x= 0,

is partition regular if and only if A satisfies the columns condition.

6.5. (m, p, c)-sets

Definition 81. Let m ∈N∪ {0}, p, c ∈N, and Fp = [−p, p]∩Z. An (m, p, c)-set with
generators y0, y1, . . . , ym ∈N is the set

Dm,p,c(y0, y1, . . . , ym)=



cym,
cym−1 + im ym, im ∈Fp
...

...
cy1 + i2 y2 +·· ·+ im ym, i2, . . . , im ∈Fp
cy0 + i1 y1 + i2 y2 +·· ·+ im ym, i1, i2, . . . , im ∈Fp


.

Theorem 82. For every m ∈N∪ {0}, p, c ∈N, and any finite coloring of N there exists
a monochromatic (m, p, c)-set.

Proof that Theorem 82 implies Rado’s Theorem. Suppose A= (ai j) ∈Zd×r is an inte-
ger matrix satisfying the columns condition. This means there exists a partition
[r]= I0∪·· ·∪ Im, and for all ` ∈ {1, . . . ,m} and i ∈ I0∪ . . .∪ I` there exists λ(`)

i ∈Q such
that ∑

j∈I0

ai j = 0,

...∑
j∈Im

ai j =
∑

j∈I0∪...∪Im−1

λ(m)
j ai j.

Let c ∈N be such that e(`)
i = cλ(`)

i is an integer for all ` ∈ {1, . . . , t} and all i ∈ I1∪. . .∪I`.
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Now, given y0, . . . , ym ∈Z, define

x j =



cym if i ∈ Im

cym−1 − e(m)
j ym if i ∈ Im−1

cym−2 − e(m−1)
j ym−1 − e(m)

j ym if i ∈ Im−2
...
cy0 − e(1)

j y1 − . . .− e(m)
j ym if i ∈ I0

Then we have
r∑

j=1
ai jx j

= ∑
j∈I0

ai jx j + . . .+ ∑
j∈Im−1

ai jx j +
∑

j∈Im

ai jx j

= ∑
j∈I0

ai j
(
cy0 − e(1)

j y1 − . . .− e(m)
j ym

)+ . . .+ ∑
j∈Im−1

ai j
(
cym−1 − e(m)

j ym
)+ ∑

j∈Im

ai j cym

= cy0

( ∑
j∈I0

ai j

)
+ cy1

( ∑
j∈I1

ai j −
∑
j∈I0

ai jλ
(1)
i

)
+ . . .+ cym

( ∑
j∈Im

ai j −
∑

j∈I0∪...∪Im−1

ai jλ
(m)
i

)
= 0.

6.6. Proof of Theorem 82

Multiplicative Intersectivity Lemma. For any multiplicatively piecewise synde-
tic set A ⊆N there exists a multiplicatively syndetic set L ⊆N such that for all finite
non-empty F ⊆ L the intersection ⋂

m∈F
A/m

is multiplicatively piecewise syndetic.

Proof. By definition, for any multiplicatively piecewise syndetic set A there exists
h ∈N such that T0 = A∪ A/2∪ . . .∪ A/h is multiplicatively thick, which means for
every n ∈N there is tn ∈N with tn · {1, . . . ,n}⊆ T0. If we define T =⋃

n∈N(tn2 · {1, . . . ,n})
then it is straightforward to check that for every m ∈N the set T0/m contains all but
finitely many elements of T. We now construct a nested sequence of multiplicatively
piecewise syndetic sets B0 ⊇ B1 ⊇ B2 ⊇ . . . as follows. Take B0 = T. If Bn−1 has
already been defined then, by the partition regularity of multiplicatively piecewise
syndetic sets, at least one of Bn−1 ∩ A/n or Bn−1\(A/n) must be a multiplicatively
piecewise syndetic set; let Bn denote one of the two that is. Through this construction,
we obtain a nested sequence of multiplicatively piecewise syndetic sets with the
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property that for all n ∈N either Bn ∩ A/n =; or Bn ⊆ A/n. Take L = {n ∈N : Bn ⊆
A/n}. By construction, for any finite non-empty F ⊆ L the intersection⋂

m∈F
A/m

contains the set BmaxF and is therefore multiplicatively piecewise syndetic. It
remains to show that L is multiplicatively syndetic. For any n ∈N, since Bn ⊆ T,
the set A/n∪ A/2n∪ . . .∪ A/hn contains all but finitely many elements of Bn. So for
some j ∈ {1, . . . ,h} we have Bn ∩ A/ jn 6= ;, which implies Bn ⊆ A/ jn and hence jn ∈ L.
Since n was arbitrary, we conclude that L∪L/2∪ . . .∪L/h =N.

Proposition 83. Let m ∈N∪ {0} and p, c ∈N. The following are equivalent.
(i) Any finite coloring of N admits a monochromatic (m, p, c)-set.

(ii) For every r ∈N there exists D(r) ∈N such that if N > D(r) then any r-colorings
of {1, . . . , N} admits a monochromatic (m, p, c)-set.

(iii) Every multiplicatively syndetic set contains a (m, p, c)-set.
(iv) Every multiplicatively piecewise syndetic set contains a (m, p, c)-set.

Proof. The implication (ii) =⇒ (i) is clear, where as the reverse implication (i) =⇒
(ii) follows from the well-known compactness principle. Furthermore, (i) =⇒ (iii)
follows quickly from the definition of multiplicatively syndetic sets, (iii) =⇒ (iv) is
an immediate consequence of Multiplicative Intersectivity Lemma prove above, and
finally (iv)=⇒ (i) follows form the fact that multiplicatively piecewise syndetic sets
are partition regular.

Proof of Theorem 82. We use induction on m. The case m = 0 holds trivially, so it
remains to show that for all m> 1, if the case for m−1 holds, then the case for m
follows.

In light of Proposition 83, it suffices to prove that every multiplicatively syndetic
set contains an (m, p, c)-set. So assume S ⊆N with S∪S/2∪ . . .∪S/h =N is given.
By the induction hypothesis, if ` is sufficiently large then any h-coloring of {1, . . . ,`}
admits a monochromatic (m−1, p, c)-set. Since S/c∪S/2c∪ . . .∪S/ch =N, by van der
Waerden’s Theorem, there exists a′,d′ ∈N such that {a′+ id′ : i ∈Fpmh`}⊆ S/cb for
some b ∈ {1, . . . ,h}. Taking a = a′b and d = d′b, we get {ca+ id : i ∈Fpmh`}⊆ S.

Next, note that {1, . . . ,`}⊆ S/d∪S/2d∪ . . .∪S/hd and hence there exist numbers
y′0, y′1, . . . , y′m−1 ∈ {1, . . . ,`} and j ∈ {1, . . . ,h} such that Dm−1,p,c(y′0, . . . , y′m−1) is a subset
of S/d j. Taking yi = j y′i for i = 0, . . . ,m−1, we get that Dm−1,p,c(d y0, . . . ,dym−1) is a
subset of S. Finally, since

{i0d y0 +·· ·+ im−1d ym−1 + ca : i0, . . . , im−1 ∈Fp}⊆ {ca+ id : i ∈Fpmh`}⊆ S,

we conclude that Dm,p,c(d y0, . . . ,d ym−1,a)⊆ S, completing the proof.
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